
 Tiako P.F. (ed) Automated Systems, Data, and Sustainable Computing. Chronicle of Computing. OkIP.

 © 2022 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0001-7_4

15

Adaptive Development of Parallel Power System Dynamic Simulation

Application in Python

Cong Wanga*, Liwei Wanga, Shuangshuang Jina

aClemson University, 1240 Supply St, North Charleston, SC, 29410, USA

ABSTRACT

Due to its intensive computational demands for real-time

operation and diagnosis, large-scale power system dynamic

simulation requires high-performance computing technologies to

accelerate its computation on advanced computing platforms. In this

paper, leveraging high-level Python and its parallel scientific

computing libraries, three parallel power system dynamic simulation

applications are adaptively developed using native MPI for Python on

CPU, PETSc for Python on CPU, and CuPy on GPU with dedicated

data manipulation strategies and implementations, respectively. Their

computational performance is compared using different sizes of testing

systems and indicates that: 1) MPI and PETSc can make a decent

performance for small and moderate-size systems on limited CPU

resources, and 2) GPU has better potential in speeding up dynamic

simulation for larger and more complex systems. The results

demonstrate Python's suitability in parallelizing power system

modeling and simulation with fast computational performance and

easy development.

Keywords: Python, dynamic simulation, HPC, scalability, speedup

I. INTRODUCTION

Power system dynamic simulation is a critical but compute-
intensive function to monitor system dynamic security margins
in real-time and keep interconnected power systems operating in
a security region. The current practice heavily relies on
commercial software tools. However, most of the commercial
tools are optimized on a single processor without utilizing high-
performance computing (HPC) techniques. For example, the
PowerWorld Simulator (PowerWorld Corp, 2012) that is based
on a sequential package takes over 60 seconds to perform a 20-
second dynamic simulation (Huang, et al., 2017). This time
difference leaves many uncertainties and security problems for
the power system balancing and operation as the system
conditions might change when the solution results are obtained,
not to mention the challenges of fulfilling the daily demands of
electricity with the quick expansion of the power system
topology and upgraded component complexity these days. This
emergent need drives the research on faster-than-real-time
dynamic simulation.

Most of the work that has been done in this area is focused
on the dynamic simulation functions that are implemented using
C/C++ types of languages. While they are highly efficient, the
complexity of code development is relatively high, especially
for people who do not have strong programming skills.
Comparing to C/C+, Python is one of the high-level
programming languages in the computer science domain. It

provides thousands of object-oriented interfaces and millions of
function calls, making it easy and safe to program, especially for
other domain experts such as power engineers. Currently,
Python-based power system modeling tools are still functionally
and computationally limited to perform dynamic analysis. For
example, pandapower (Thurner, et al., 2018), PowerGAMA
(Svendsen & Spro, 2016), and PYPOWER (pypower, 2015)
only offer serial programs for dynamic modeling. High-
Performance Computing (HPC) techniques taking advantage of
advanced shared memory or distributed memory computing
architecture are ways to go to fit the gap.

In this paper, three parallel approaches are implemented to
accelerate power system dynamic simulation. The structure of
this paper is 1) the workflow and algorithm of power system
dynamic simulation and the state-of-the-art of parallel
programming in Python in Section II; 2) two proposed CPU-
based parallel implementations using Message Passing Interface
(MPI) (The MPI Forum Corp, 1993) and Portable Extensible
Toolkit for Scientific Computation (PETSc) (Balay, et al.,
2001), and a GPU-based parallel implementation using CuPy
(Nishino & Loomis, 2017) in Section III to showcase how the
performance boost can be applied within various Python
programming environments; and 3) the performance and
analysis of each implementation and the recommended one
considering the sizes of the power systems and the constraints
of the available computing resources in Section IV. Finally,
Section V concludes the current research outcomes and proposes
the future work for enhancement.

II. BACKGROUND

A. Power System Dynamic Simulation

Power system dynamic simulation program generally
consists of nodal admittance matrix (full Y matrix) manipulation
and multiple time-step simulations. It requires a computationally
intensive time-domain solution of numerous differential and
algebraic equations (DAEs) for a short period of time (e.g., 10
seconds), as shown in Eq. 1,

{
�̇� = f(𝐱, 𝐮)

𝟎 = g(𝐱, 𝐮)
 (1)

where the vector x represents dynamic state variables such as
generator rotor angles and speeds, and the vector u represents
algebraic variables such as the network bus voltage magnitudes

16

and phase angles, and real and imaginary parts of the bus voltage
(Jin, Huang, Diao, Wu, & Chen, 2013).

 Given a power system with N buses, M generators, and Z
branches, the algebraic equations in Eq. 1 can be represented by
Eq. 2.

𝐘𝑁𝑁 ∗ 𝐕𝑁 = 𝐈𝑁 (2)

To simplify the complexity of the matrix and achieve the best
matrix operation performance, for a power system with classical
model and constant impedance load, YNN can be reduced to only
contain generator internal buses, Y’MM. According to (Jin,
Huang, Diao, Wu, & Chen, 2017) and (Anderson & Fouad,
2008), Eq. 3 represents the logic of acquiring reduced nodal
admittance matrix (reduced Y matrix),

𝐘′𝑀𝑀 = 𝐘𝑀𝑀 − 𝐘𝑀𝑁 ∗ 𝐘𝑁𝑁
−1 ∗ 𝐘𝑁𝑀 (3)

where YMM is the matrix storing generators' resistance and
reactance, YMN is the links between generator internal buses and
terminal buses, YNN contains constant load impedance and
generator transient impedance, and YNM is the transpose of YMN.
Thus, the algebraic equations can be modified to Eq. 4.

𝐘′𝑀𝑀 ∗ 𝐕
′
𝑀 = 𝐈′𝑀 (4)

The equations of motion for an individual generator a in the
complex system could be represented by Eq. 5 for a classical
generator model.

{

𝑑𝑤𝑎
𝑑𝑡

=
𝑤𝑠𝑎
2𝐻𝑎

(𝑃𝑚𝑎 − 𝑃𝑒𝑎 − 𝐷𝑎(𝑤𝑎 − 𝑤𝑠𝑎))

𝑑Ө𝑎
𝑑𝑡

= 𝑤𝑎 −𝑤𝑠𝑎

(5)

Ha is the inertia constant, wa is the speed, wsa is the synchronous
speed, Pma and Pea are the mechanical power input and active

power at the air gap, Da is the damping coefficient, and Өa is the
angular position of the rotor in the electrical radians with respect
to synchronously rotating reference (Jin, Huang, Diao, Wu, &
Chen, 2013).

To solve the DAEs, the differential equation set in Eq. 1
needs to be first discretized into algebraic equations, which are
then lumped with the original algebraic equations. The Modified
Euler (ME) (Atkinson, 2008) method are usually used to solve
these equations at each time step.

B. Parallel Programming Libraries in Python

There are many portable CPU or GPU-based parallel
computing modules widely used in Python, e.g. MPI,
Multiprocessing (Palach, 2014), PETSc, Numba (Lam, Petrou,
& Seibert, 2015), and CuPy, etc. Three libraries that are
leveraged in this work are listed below:

a) mpi4py: As a standardized message-passing library,

MPI offers process communications via messages through a

communication network. mpi4py (Dalcin, Paz, & Storti, 2005),

which supports point-to-point and collective communications

of Python buffer objects (NumPy (Walt, Colbert, & Varoquaux,

2011) arrays, builtin bytes, string, and Python array, etc.)

provides the capabilities to code MPI programs in Python. In

this work, it serves as a baseline implementation for parallel

dynamic simulation development on multi-core CPUs through

fine-tuned data distribution and explicit inter-processor

communications from scratch.

b) petsc4py: PETSc is a C or Fortran-based suite of

algorithms and data structures for the solution of large-scale

scientific and engineering problems on high-performance

parallel computing environments. petsc4py (Dalcin, Paz, Kler,

& Cosimo, 2011) is an open-source software project that

provides bindings to PETSc libraries in Python. It offers high-

level interfaces with collective semantics so that users rarely

have to make explicit message-passing calls to support inter-

processor data communication (Balay, et al., 2001). In this

work, it serves as an adaptive implementation for parallel

dynamic simulation development on multi-core CPUs in a

semi-automated way as it averts the message passing calls and

leaves the data organization behind.

c) CuPy: CuPy is a high-level NumPy compatible data

structure library accelerated with NVIDIA CUDA (Sanders &

Kandrot, 2010) on the backend. It makes the full use of the GPU

architecture by directly leveraging CUDA computing libraries

such as cuSolver (Buck, 2007), cuBLAS (Buck, 2007),

cuSPARSE (Naumov, Chien, Vandermersch, & Kapasi, 2010),

and cuDNN (Chetlur, et al., 2014) to support the array

functionalities and computations. It also provides an API for

writing customized CUDA C/C++ kernels (element-wise,

reduction, and raw kernels) with enhanced flexibility. In this

work, it serves as a portable and resources affordable GPU-

based implementation by making extensive use of CuPy multi-

dimensional array data structure to alleviate the heavy-duty

computations from CPU to GPU.

* Corresponding author E-mail: cong2@clemson.edu

Fig. 1. CPU-based parallel strategy with MPI and PETSc.

17

III. PROPOSED APPROACH

The adaptive development of parallel dynamic simulation on
different computing platforms allows for extensive evaluations
of each implementation's computational capabilities and its
feasibility to the specific engineering problem.

A. Parallel Implementation on CPU

Figure 1 summarizes the overall parallel design and
implementations of dynamic simulation. At the start, the
working program splits the input data blocks row-wise, meaning
that each process should own a portion of information of buses
with n, branches with z, and generators with m in a typical power
system. Hence, the full arrays used in a serial code can be
initialized to partial arrays and perform partial computations on
each process as needed. For example, in a full Y matrix
formation at each fault condition, the three groups of matrix-
matrix operations involved can be boosted by downsizing the
configured matrices. The first group in a serial program is shown
in Eq. 6,

{
𝐃𝑍𝑁 = 𝛼 ∗ 𝐂𝐇𝑍𝑍 ∗ 𝐅𝑁𝑍

𝑇 + 𝛽 ∗ 𝐃𝑍𝑁
𝐘𝑁𝑁 = 𝛼 ∗ 𝐅𝑁𝑍 ∗ 𝐃𝑍𝑁 + 𝛽 ∗ 𝐘𝑁𝑁

(6)

where α and ꞵ are scalars. In our parallel approach, since the

original left side CH matrix is a diagonal matrix with size Z x Z,
sequentially, it can be initialized and value-assigned on each
process to ch with the size z x z based on the distributed data size
z the process holds. In addition, the right side matrix F (N x Z)
can go with f (N x z) and the additional term D can be changed
to d with z x N. Consequently, on each process, the operations
are converted into Eq. 7. By leveraging the outcomes from their
former group, the other two groups can make their own
operation like Eq. 7. Finally, each process still obtains a
resulting N x N y matrix, however, the summation of all y
matrices from all processes is expected to be equal to the original
full Y matrix, YNN.

{
𝐝𝑧𝑁 = 𝛼 ∗ 𝐜𝐡𝑧𝑧 ∗ 𝐟𝑁𝑧

𝑇 + 𝛽 ∗ 𝐝𝑧𝑁
𝐲𝑁𝑁 = 𝛼 ∗ 𝐟𝑁𝑧 ∗ 𝐝𝑧𝑁 + 𝛽 ∗ 𝐲𝑁𝑁

(7)

After forming the full Y matrix and returning it to all
processes, the linear system in Eq. 8 and the subsequent matrix-
matrix multiplications in the reduced Y matrix operations, are
parallelized easily as the large right-hand side matrix YNM can
be built to smaller YNm on each process.

𝐘𝑁𝑁 ∗ 𝐗𝑁𝑀 = 𝐘𝑁𝑀 (8)

Similarly, each process should be able to make its own ymM in
Eq. 9 based on the split input data and other calculated matrices.
Therefore, it only solves the work assigned to it and finally
outputs a partial reduced Y matrix (y’mM).

𝐲′
𝑚𝑀

= 𝐲𝑚𝑀 − [𝐘𝑀𝑁 ∗ 𝐘𝑁𝑁
−1 ∗ 𝐲𝑁𝑚]

𝑇 (9)

The remaining work flow of the time-series simulation
wraps up several computational intensive calculations (Jin,
Chen, Wu, Diao, Huang, 2015) including:

• Fault determination and injected power flow solution.

• Constant impedance conversion.

• Equations of generator dynamics formation in Eq. 5.

• Numerical integration.

The design of the parallel simulation function is that each
process directly intakes the outcome of partial reduced Y from
themselves without any additional communications. In another
word, by taking advantage of y’mM and the previously
partitioned information about system and generators, each
process has the capability to compute the dynamic state
variables of the distributed number of generators independently
at a single time step. For instance, the current injection in Eq. 4
can be expressed as Eq. 10.

𝐲′
𝑚𝑀

∗ 𝐕𝑀 = 𝐢′𝑚 (10)

Eventually, after all the processes complete the iterations, the
master process merges the results together and writes the outputs
of the program.

a) MPI: The development of the native MPI program is

straightforward. A conda environment with Python 3.8.2 and

the package of mpi4py 3.0.3 is established to take advantage of

the distributed computing architecture. In terms of the sparse

nature of a realistic power system topology, instead of only

using NumPy dense arrays to represent the matrices, SciPy

(Virtanen, et al., 2020) sparse data type csr_matrix is

considered to save memory space and computational time,

especially in the phases of full Y and reduced Y formation. The

linear algebraic object spsolve() for sparse matrices can also be

utilized to solve the system equation for each fault condition.

But as coding MPI program heavily relies on the explicit

decomposition and distribution of data across processes, this

approach has a significant limitation in its level of

implementation difficulty and requires a relatively higher

parallel programming understanding and skills from the

developer.

b) PETSc: Unlike the native MPI-based approach which

establishes the parallel program by manually keeping all the

partitioned data and partial matrix operations on each process

throughout the program to save memory usage and avoid inter-

processor communications, the PETSc-based implementation

automatically has all the data taking matrix and vector as the

basic unit to manipulate. These built-in datatypes are highly

optimized for running on parallel architectures. Once defined

and allocated in parallel, each processor stores a part of the

matrix or vector and computes the work locally. As a semi-

automated implementation, PETSc allows developers to

employ at a high level of abstraction. For example, to reduce

unnecessary computation workload caused by zero elements,

we simply set the matrices as mpiaij type, which represents a

parallel sparse matrix. Appendix B gives a snapshot of some

representative vector and matrix operations in this

implementation to demonstrate the simplicity in the semantics

of PETSc. In addition, PETSc provides a built-in linear iterative

solver (ksp (Balay, et al., 2019)) and several direct solvers (e.g.,

mumps (Amestoy, Patrick, & Duff, 2001), superlu (Demmel, et

al., 1999), etc.). In our case, the direct solver with Lower and

Upper (LU) factorization and approximate minimum degree

ordering is selected considering the size and sparsity of the

linear system. Moreover, it also offers other lower-level APIs

to facilitate any customized operations if the built-in functions

18

cannot meet specific implementation needs. Thus, the variety

of options for scientific computing brings in better coding

flexibility and computational efficiency.

B. Parallel Accelaration on GPU

In most cases, GPU-based package in Python such as CuPy
provides a nearly drop-in replacement interface, and meanwhile,
outperforms NumPy and SciPy on data-level parallelism if the
problem size of numerical analysis is large enough. As a result,
we adapt the original serial code by offloading intensive matrix
and vector operations to GPU. Figure 2 depicts the overall
implementation strategy of the CuPy program. Except for the
initial data parsing and a few unavoidable conditional and
control flow statements, most of the array tasks are substituted
by the objects and related kernel functions supported by CuPy
9.0.0 with cudatoolkit 11.2 in the entire program.

Appendix C reveals the CuPy semantics using the sparse
matrix-matrix multiplications as an example. In full Y matrix
computations, cupyx.scipy.sparse._matrix.dot() kernel function
for sparse matrix allows the array manipulations executed using
hundreds of GPU tensor cores, which are much faster than
NumPy dense and SciPy sparse counterparts on CPU. To solve
the linear system equations and obtain reduced Y matrix, sparse
function cupyx.scipy.sparse.linalg.spsolve() is able to achieve
the desired solutions. For the simulation, in one time step, all the
dynamic parameters of all generators are calculated based on the
GPU array operations such as dot product, Hadamard product,
and element-wise addition.

The CuPy-based approach is very user-friendly and cost-
effective. It is the most concise implementation among the three.
Given the superb multi-processing capability of GPU, we
envision this implementation exhibits comparable or even better
computational performance of parallel dynamic simulation than
the two CPU-based implementations on large system cases.

C. Optimization of the Data Structure and Algorithm

a) Sparse Matrix Operations: The power system dynamic

simulation program is originally developed with dense

matrices. However, as dense datatype requires each element to

be involved in the computation, extra computing efforts and

resources are needed. As aforementioned, we turn all necessary

matrix formulations into sparse matrix operations to minimize

memory usage and speed up data processing.

b) Adam-Bashforth Integration: Although the ME method

is the most commonly used integration method in power system

dynamic simulation, it needs the network equations to be solved

twice (predictions and updates) at each time step, leading to

doubled performance cost. Alternatively, the Adams-Bashforth

(AB) method (Atkinson, 2008) only requires a one-time

approximation in a loop by utilizing the solutions of the current

and the last time steps. Unlike our previous work in (Jin, Huang,

Diao, Wu, & Chen, 2013) and (Jin, Chen, Wu, Diao, Huang,

2015), in this work, we switch from the ME integration method

to AB, which theoretically provides a two times speedup

regardless of any hardware constraints due to one less

approximation step in each iteration.

IV. RESULTS AND ANALYSIS

To validate the proposed approaches and implementations,
three test cases with different sizes are selected to evaluate the
computational performance. Each case is run multiple times to
take an averaged execution time for the evaluation of its
computational performance with the least bias.

A. Test Cases

The smallest-size test case in this study is the realistic
Polish3120b system. The medium-size 3600b and the largest-
size 8100b are artificial cases derived from a 3g9b system by
duplicating itself 400 and 900 times, respectively. All the
parallel dynamic simulations developed in Section III run on all
testing cases for a 30-second simulation with a time step of 0.005
seconds. A fault is applied at a selected bus at 3 seconds and
cleared at 3.05 seconds of the simulation to mimic a system
disturbance and the relevant generators’ dynamics. The
dimension of each test case can be found in Tab. 1.

B. System and Hardware Configuration

All three working codes are implemented on Clemson
University’s supercomputing facilities Palmetto Cluster. For the
two parallel implementations on CPU, a computing node
consisting of 16 CPU cores (Intel Xeon(R) Gold 6148@2.40
GHz) with 64 GB memory is requested to imitate the limit of
hardware resources and perform the tasks. For the GPU
accelerated program, with a powerful Tesla V100 16 GB GPU,
only 1 CPU core with 4 GB memory is enough as there are few
operations in the program that need CPU.

C. Performance Improvement

Remarkable improvement in computational performance has
been observed due to the following two design and development
strategies applied in all three implementations.

a) Sparse Matrix Operations: Table 2 lists the

performance of Full Y manipulations for Polish3120b (Y

Sparsity = 0.9989) in MPI version using dense and sparse

matrix respectively as an example. By converting matrix data

type, the computational performance for Full Y formation is

Fig. 2. GPU accelerated approach for dynamic simulation.

TABLE I. POWER SYSTEM TEST CASES

Test Case Bus Branch Generator Source

Polish3120b 3120 3693 93 MATPOWER

3600b 3600 3602 1200 400 x 3g9b

8100b 8100 8102 2700 900 x 3g9b

19

largely improved and furthermore greatly contributed to the

reduction of the total dynamic simulation time.

b) Adam-Bashforth Integration: Table 3 displays the

execution time of the integration methods by running the MPI-

based program with 4 MPI processes as an example, which

shows a 1.6+ times speedup on all test cases. Likewise, the

PETSc and CuPy-based implementations also exhibit a similar

boost after the switch. Figure 3 gives a comparison of

integration output from PETSc on a generator’s machine speed

value using the ME method vs. the AB method. The slight

differences between each other demonstrate the accuracy of

applying the Adam-Bashforth method in dynamic simulation

besides its faster computational capability.

D. Scalability Analysis

For our two CPU-based implementations, as the number of
computing processes increases, the computation times are
expected to decrease until the capability is limited by the
problem size once a certain number of computing processes is
reached. The speedup of each program is obtained by dividing
the computation time of single-process serial run over the multi-
process parallel run under specific numbers of processes. For
CuPy-based implementation, since the GPU’s computing power
is fixed, CuPy makes extensive use of its well-optimized CUDA
kernel resources to allow for maximum performance against
non-GPU approaches. The entire testing results are summarized
in Appendix A and the performance curves are plotted in Fig. 4
for better illustration. A horizontal straight line is used in each
plot to represent CuPy's performance since it does not require
multiple CPU processes to run in parallel.

a) Polish3120b Case:

• MPI: peak performance (1.34 seconds) is reached at 8
processors with a 2.66-time speedup comparing to its
serial run. Consistent performance gains are achieved
until 16 processors are used when the communication
overhead begins to counteract the profit of
parallelization.

• PETSc: it takes 0.87 seconds when running in serial. It
reaches the best computational performance of 0.74

seconds with a speedup of 1.18 times when utilizing 8
CPU processors. The contribution to the scalability in
this implementation mainly comes from the parallelism
of the Reduced Y matrix potion. The contribution from
the Full Y matrix formulation is quite limited due to its
high sparsity and low computational intensity.

• CuPy: it has a 2.86-second total execution time to
complete the computation. Even though such a GPU-
based program has the best performance in matrix and
vector operations and linear algebraic solutions which
significantly reduce the computing time in Full Y matrix
and Reduce Y matrix formation, an enormous kernel
launch overhead in each time step at the Simulation
phase ruins the overall performance when the matrix size
is not large enough to guarantee a high weight in the
entire computation.

b) 3600b Case: In the moderate-size 3600b case, the

computational intensity increases dramatically due to the

significantly increased number of generators. It results in larger

matrix-matrix operations and linear equations solving in terms

of the Full Y matrix and Reduce Y matrix formations, and

incurs increased complexity to compute generator state

variables in the Simulation phase.

TABLE II. THE EXECUTION TIME (SEC) OF FULL Y MATRIX FORMATION IN

NATIVE MPI USING DIFFERENT (DENSE AND SPARSE) MATRIX TYPES

Process 1 2 4 8 16

Dense 125.55 46.14 18.96 8.97 4.71

Sparse 1.71 0.72 0.34 0.17 0.11

TABLE III. PERFORMANCE COMPARISON (SECOND) IN THE SIMULATION

FUNCTION BETWEEN TWO METHODS IN MPI WITH 4 PROCESSES

Test Case /

Method

Modified

Euler

Adam-

Bashforth
Speedup

Polish3120 0.81 0.49 1.66

3600b 1.04 0.66 1.65

8100b 1.61 0.95 1.69

Fig. 3. A comparison of simultion results between the Adam-Bashforth and

the Modified Euler methods.

Fig. 4. The total performance (time) to finish each test case using three

approaches (CuPy is fixed).

20

• MPI: program reaches its peak performance (2.26
seconds) at 8 processors. Impressive scalability is
observed in all phases of the executions. Compared to the
Polish3120b case, the program run time does not bounce
up when the number of processors is increased from 8 to
16. Since the computation intensity is greatly larger than
the Polish3120b case, at least 5 times longer Reduced Y
operation can be observed at each process number.

• PETSc: it runs in 6.41 seconds in sequential. The
execution time drops to 1.40 seconds with 16 processors,
a speedup of 4.6. The scalability from the Full Y matrix
formation remains limited due to the small change of bus
and branch sizes. However, better scalability in Reduced
Y matrix formation and Simulation are consistently
observed as the big increase of generator size (from 93 to
1200) significantly contributes to the density of the
matrices being manipulated in these two phases.

• CuPy: it is again marked as the best one in Full Y and
Reduced Y, however, it takes time to finish the
Simulation. The problem size is still not large enough to
occupy a larger proportion of the overall execution.

c) 8100b Case: The 8100b system is purposely made 2.25

times larger than the 3600b case for further evaluation on the

potential impact of increased system size on the performance of

parallel implementations.

• MPI: peak execution performance (11.68 seconds)
occurs at 8 processors with a 2.96-time speedup
comparing to its serial run. Although consistent close-to-
linear scalability is achieved at each phase of the
execution, the most time-consuming part changes from
the Simulation to the Reduced Y matrix formation,
which implies a higher computational burden of linear
system solving in this phase as the problem size
continues to increase.

• PETSc: the scalability of this case is on the same track as
the 3600b one. With 16 cores, the total execution time is
reduced to 4.88 seconds, which is only 16% of a
sequential run. Similar to the native MPI program, the
solution time of linear systems at the Reduced Y matrix
formation phase begins to dominate the computation in
the entire program.

• CuPy: it finally starts to show powerful GPU-based
computing efficiency as the problem size becomes
larger. The cumbersome linear system solving in
Reduced Y matrix formation remains solvable in a
considerably short time (0.06 seconds). The entire
program can be run within 3.14 seconds in this GPU-
based implementation, which already outperforms the
other two CPU-based implementations.

E. Discussion

From the comparison above, following observations are
identified:

a) The native MPI-based implementation has the

advantage of explicitly decoupling the problem with fine-tuned

algorithms but at a cost of high programming effort. The

strategies to split the data from the beginning have significant

impacts on the alleviation of Full Y matrix and Reduced Y

matrix operation burdens. Best scalability can be achieved

across the three cases as a result of this effort. However, the

parallel communication routine MPI.Allreduce(y) becomes

more significant with the increased processor number and

problem size because multiple large matrix additions and the

collective communication between processors are required.

Furthermore, since the MPI routines only take buffer-like

Python objects for the communications, sparse arrays must be

switched back to dense type at their full dimensions, resulting

in an unavoidable large data transfer and relatively low total

performance gain. Therefore, the MPI-based approach is not

recommended for modeling large-scale power systems..

b) The semi-automated PETSc implementation reduced

the complexity of parallel programming. Like MPI, it requires

several collective communication calls (VecScatter(), toAll(),

and toZero(), etc.) for the Full Y matrix and Reduced Y matrix

formations to guarantee every single parallel step can be built

successfully. Nonetheless, its highly abstracted and optimized

routines support sparse and compressed data operations and

communications throughout the entire program. PETSc also

makes a huge gain to perform vectorized matrix operations if

the process number increases. As a result, both the

communication and computation are more efficient as

compared to the MPI-based implementation. It's recommended

as a good candidate to solve dynamic simulation for small to

medium-size systems.

c) The GPU-based implementation simply changes the

original NumPy methods in serial code to CuPy related

functions. Thus, the parallel program is highly element-wise

operation-based and easy to implement. From the observations,

it has the best capability to resolve Y and Reduced Y, but costs

a lot in the Simulation phase due to the overhead of kernel

launch in each iteration. Based on the overall testing results, it

is highly recommended for solving large-scale dynamic

simulation in parallel.

V. CONCLUSION AND FUTURE WORK

This paper adaptively presents three parallel Python-based
implementation approaches to speed up power system dynamic
simulation application on multi-core CPUs and many-core GPU.
Sparse matrix operations and a fast integration method are
applied to improve the computational performance of all
implementations. Benchmarking tests are made to evaluate the
feasibility and capability of each implementation in terms of
matrix manipulation, linear system solving, and simulation
integration for power systems at different size levels. For small
and medium cases, the PETSc version is the best option using
limited CPU cores and memory. CuPy GPU computing is
portable, cost-effective and suitable to run more complex
systems. Future work involves the further optimized CPU and
GPU versions, and real-time data analytics and visualization,
which are also considered to be incorporated into this work to
build a seamless data processing, computation, and analysis
pipeline to facilitate integrated comprehensive studies on fast
electric power system dynamic simulation in one unified HPC
environment.

21

APPENDIX

A. COMPARISON OF THE EXECUTION TIME (SEC) OF PYTHON-BASED IMPLEMENTATIONS ON DIFFERENT CASES

 POLISH3120B 3600B 8100B

METHOD PROCESS FULL Y REDUCED Y SIMULATION TOTAL FULL Y REDUCED Y SIMULATION TOTAL FULL Y REDUCED Y SIMULATION TOTAL

MPI

1 1.71 0.33 0.58 3.56 1.83 2.79 1.19 7.82 9.54 13.14 2.27 34.59

2 0.72 0.17 0.51 2.06 0.75 1.42 0.84 4.32 3.82 6.48 1.35 19.09

4 0.34 0.10 0.49 1.49 0.36 0.72 0.66 2.78 1.67 3.25 0.95 13.95

8 0.17 0.06 0.55 1.34 0.18 0.39 0.60 2.26 0.80 1.63 0.79 11.68

16 0.11 0.05 0.78 1.68 0.10 0.27 0.58 2.33 0.41 0.96 0.76 11.90

PETSC

1 0.03 0.42 0.27 0.87 0.03 5.53 0.75 6.41 0.06 28.38 1.60 30.27

2 0.06 0.40 0.27 0.84 0.05 3.82 0.49 4.47 0.07 19.64 0.91 20.84

4 0.05 0.35 0.31 0.81 0.04 2.26 0.40 2.80 0.05 11.48 0.61 12.34

8 0.05 0.27 0.33 0.74 0.04 1.39 0.37 1.88 0.05 6.75 0.47 7.46

16 0.05 0.26 0.40 0.81 0.04 0.89 0.38 1.40 0.05 4.18 0.46 4.88

CUPY 0.026 0.016 2.49 2.86 0.023 0.021 2.49 2.89 0.023 0.06 2.58 3.14

B. PETSC SEMANTICS EXAMPLE C. SPARSE MATRIX-MATRIX MULTIPLICATION IN CUPY

22

REFERENCES

Amestoy, P. R., Duff, I. S., L'Excellent, J. Y., & Koster, J. (2001). A fully
asynchronous multifrontal solver using distributed dynamic

scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1),

15-41.
Anderson, P. M., & Fouad, A. A. (2008). Power system control and stability.

John Wiley & Sons.

Atkinson, K. E. (2008). An introduction to numerical analysis. John wiley &
sons.

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., ...

& Zhang, H. (2019). PETSc users manual.
Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G.,

McInnes, L. C., ... & Zhang, H. (2001). PETSc. See http://www. mcs.

anl. gov/petsc.
Buck, I. (2007). Gpu computing with nvidia cuda. In ACM SIGGRAPH 2007

courses (pp. 6-es).

Dalcin, L. D., Paz, R. R., Kler, P. A., & Cosimo, A. (2011). Parallel
distributed computing using Python. Advances in Water

Resources, 34(9), 1124-1139.

Dalcín, L., Paz, R., & Storti, M. (2005). MPI for Python. Journal of Parallel
and Distributed Computing, 65(9), 1108-1115.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., & Liu, J. W. (1999).

A supernodal approach to sparse partial pivoting. SIAM Journal on
Matrix Analysis and Applications, 20(3), 720-755.

Huang, R., Jin, S., Chen, Y., Diao, R., Palmer, B., Huang, Q., & Huang, Z.

(2017, July). Faster than real-time dynamic simulation for large-size
power system with detailed dynamic models using high-performance

computing platform. In 2017 IEEE Power & Energy Society General

Meeting (pp. 1-5). IEEE.

Jin, S., Chen, Y., Wu, D., Diao, R., & Huang, Z. H. (2015). Implementation of

parallel dynamic simulation on shared-Memory vs. distributed-

Memory environments. IFAC-PapersOnLine, 48(30), 221-226.

Jin, S., Huang, Z., Diao, R., Wu, D., & Chen, Y. (2013, July). Parallel

implementation of power system dynamic simulation. In 2013 IEEE

Power & Energy Society General Meeting (pp. 1-5). IEEE.

Jin, S., Huang, Z., Diao, R., Wu, D., & Chen, Y. (2017). Comparative
implementation of high performance computing for power system

dynamic simulations. IEEE Transactions on Smart Grid, 8(3), 1387-

1395.
Lam, S. K., Pitrou, A., & Seibert, S. (2015, November). Numba: A llvm-

based python jit compiler. In Proceedings of the Second Workshop

on the LLVM Compiler Infrastructure in HPC (pp. 1-6).
Naumov, M., Chien, L., Vandermersch, P., & Kapasi, U. (2010, September).

Cusparse library. In GPU Technology Conference.

Nishino, R. O. Y. U. D., & Loomis, S. H. C. (2017). CuPy: A NumPy-
compatible library for NVIDIA GPU calculations. 31st confernce on

neural information processing systems, 151.

Palach, J. (2014). Parallel programming with Python. Packt Publishing Ltd.

pypower-dynamics. PyPI. (2015, May 31). https://pypi.org/project/pypower-

dynamics/.

Sanders, J., Kandrot, E., & by Example, C. U. D. A. (2010). An Introduction
to General-Purpose GPU Programming.

Svendsen, H. G., & Spro, O. C. (2016). PowerGAMA: A new simplified

modelling approach for analyses of large interconnected power systems,
applied to a 2030 Western Mediterranean case study. Journal of

Renewable and Sustainable Energy, 8(5), 055501.

The MPI Forum, C. O. R. P. O. R. A. T. E. (1993, December). MPI: a message

passing interface. In Proceedings of the 1993 ACM/IEEE conference on

Supercomputing (pp. 878-883).

Thurner, L., Scheidler, A., Schäfer, F., Menke, J. H., Dollichon, J., Meier, F.,
... & Braun, M. (2018). pandapower—an open-source python tool for

convenient modeling, analysis, and optimization of electric power
systems. IEEE Transactions on Power Systems, 33(6), 6510-6521.

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array:

a structure for efficient numerical computation. Computing in science &
engineering, 13(2), 22-30.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,

Cournapeau, D., ... & Van Mulbregt, P. (2020). SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nature methods, 17(3),

261-272.

