
 Tiako P.F. (ed) Intelligent and Sustainable Solutions. Chronicle of Computing. OkIP. CAIF25#8

 © 2025 Oklahoma International Publishing https://doi.org/ 10.55432/978-1-6692-0011-6_6

1 Presented at the 2025 OkIP International Conference

 on Artificial Intelligence Frontiers (CAIF)

in Oklahoma City, OK, USA, and Online, on April 2, 2025

Leveraging AI to Enhance Human-Driven Software Development:

A Comparative Study Across Diverse Applications

Aziz Fellah

Northwest Missouri State University, School of Computer Science and Information Systems, Maryville MO 64468, USA

Email: afellah@nwmnissouri.edu

ABSTRACT

This study explores how Generative AI, including AI-Powered

tools like ChatGPT, can enhance the Software Development Life Cycle

(SDLC). In a software engineering course, students worked in teams

on 12 use case studies spanning web development, mobile apps, and

game development. These use case studies covered domains such as

education, sports, healthcare, and entertainment. Teams adopted dual

roles as stakeholders and developers. Each team first defined a use

case study and outlined project requirements. Use case studies were

then randomly assigned, and teams worked as developers, specifying

requirements and architectural designs. Scrum-style meetings

facilitated collaboration. The paper compared developer-created and

AI-generated user stories, functional and non-functional

requirements, and architectural designs, including UML diagrams.

Results showed ChatGPT excelled in structured web and app

development domains but struggled significantly in game development

and faced considerable difficulty in generating UML diagrams across

all applications. This research highlights the strengths and limitations

of Generative AI in enhancing software development processes.

Keywords: Generative AI, ChatGPT, Software Requirements,

Software Development Life Cycle, AI-Powered Tools

I. INTRODUCTION

This research explores how Generative AI tools, like
ChatGPT, can support software developers in key phases of the
Software Development Life Cycle (SDLC) (de Oliveira Santos,
Figueiredo, et al., 2024; Heyn, Knauss, et al., 2021; Marar,
2024). Defining and refining requirements is a fundamental part
of the SDLC, ensuring alignment with stakeholder expectations
and guiding successful use case study outcomes (Ahmad, Bano,
et al., 2021; de Oliveira Santos, Figueiredo, et al., 2024;
Yoshioka, Husen, et al., 2021). Software developers strive to
capture diverse stakeholder perspectives accurately, as any
misalignment can lead to misunderstandings, rework, or even
project failure. Well-defined requirements serve as a road map
across the various phases of the SDLC, fostering collaboration
and consensus while reflecting stakeholder objectives. Reaching
consensus on critical decisions, such as those related to
architecture and design, can be particularly challenging due to
the varied experiences, perspectives, and skill sets of software
developers (Bhandari et al., 2023; Todorov, 2022). These
differences often lead to conflicting viewpoints, especially in
large, complex projects with multiple stakeholders. This
research investigates how tools like ChatGPT, powered by
Generative AI, can assist developers in eliciting, analyzing, and

refining both functional and non-functional requirements
(Bhandari et al., 2023; Todorov, 2022). By enhancing
collaboration, improving consensus, and addressing
uncertainties, ChatGPT enables developers to make informed
decisions and identify patterns within complex requirements
(Lorenzoni et al., 2021; Terragni et al., 2024). By
complementing traditional methods, ChatGPT offers new
insights, enhances efficiency, and clarifies requirement
management under diverse scenarios within software projects
(Barenkamp et al., 2020; Lorenzoni et al., 2021; Smith et al.,
2024).

The study progressed through a series of phases designed to
mirror real-world software development. It engaged teams of
students to work on 12 different use case studies in a software
engineering course. Each team was randomly tasked with one
use case study in one of three domains: web development,
mobile app development, and game development. Domains
included education, healthcare, e-commerce, entertainment, and
sports. In Phase 1, teams brainstormed and proposed a use case
study based on their interests. In Phase 2, projects were
reassigned, and teams acted as developers for other teams’
proposals, conducting stakeholder-developer meetings to clarify
and validate functional and non-functional requirements. Phases
3 and 4 involved creating user stories and developing
architectural designs—first by developers and then using AI
tools, respectively. Students were unaware of the AI task until
after submitting their own user stories, which encouraged deeper
reflection during comparisons. In phase 5, teams analyzed AI-
generated and developer-generated user stories, identifying
similarities, differences, and gaps. In Phase 6, UML component
and class diagrams were created, combining the best of AI-
generated textual descriptions with the team’s own visual
diagrams. Finally, in Phase 7, teams presented their findings in
scrum-style presentations, compared their work with AI-
generated stories, and participated in a Q&A session to promote
discussion. The next phases, implementing and coding, are
currently underway this academic term, with the same teams
continuing their work.

The remainder of this paper is organized as follows: Section
II states the objectives of this research, which are to explore the
role of AI-powered tools, such as ChatGPT, in comparison to
human developers throughout the Software Development Life
Cycle (SDLC). Section III outlines our proposed methodology,
detailing the multi-phase approach, the participants, and the
overall setup for the subsequent sections. Section VI introduces

2

three key projects of the 12 use case studies, covering game
design, web services, and mobile app development. Each team
categorized their user stories into components, classes, and
refined them further into tasks, serving as a road map for
facilitating a structured comparison between AI-generated and
team-developed outcomes for coding and implementation
Section V presents a comparative analysis of the software
specifications and design generated by both developers and AI
across various domains. In Section VI, we discuss how AI tools
can efficiently enhance SDLC research. Several AI-powered
tools are highlighted, including GitHub Copilot, Jira, Slack,
Otter.ai, and Tabnine. Finally, Section VII concludes the study,
offering insights and posing key questions for future
exploration. In the remainder of this paper, the term ”use case
study” is used to describe the process or analysis, while
”project” refers to the tangible artifact or deliverable. When both
aspects are relevant, the terms are combined for clarity.

II. OBJECTIVE: LEVERAGING AI-POWERED TOOLS

 This research aims to explore the potential of AI-powered

tools, such as ChatGPT, in comparison with human developers

throughout the SDLC. The objective is to examine how these

tools can complement or enhance traditional development

practices, particularly in tasks like requirements engineering,

design, and testing. By comparing AI-generated artifacts with

developer-created outputs, this research seeks to evaluate the

effectiveness, limitations, and potential applications of AI tools

in real-world software development contexts.

A. Human-AI Comparison for Alignment

Evaluate and compare human-generated and AI-generated
requirements, including UML diagrams, class designs, and task
breakdowns, to understand how AI-powered tools such as
ChatGPT assist teams in aligning.

B. Promoting AI Integration and Skill Building

Encourage developers to explore and integrate AI-powered
tools such as ChatGPT into their workflows, showcasing how
these technologies can streamline processes, generate UML
diagrams and class definitions, and assist in task allocation for
improved project outcomes.

C. Enhancing Collaboration and Prediction Insights

Examine how AI-powered tools foster better collaboration,
improve decision-making, and provide predictive insights. This
includes their ability to generate accurate UML representations,
refine class hierarchies, and enhance team dynamics by reducing
discrepancies in task understanding especially in complex
software projects.

D. Unveiling the AI Behind the Scenes

AI-powered tools are transforming the Software SDLC by
automating key tasks such as requirements generation, user
stories, architectural design, and coding. Tools like ChatGPT,
GitHub Copilot, and Tabnine leverage advanced AI models to
assist in creating textual descriptions, generating user stories,
and providing intelligent code suggestions. Beyond coding,
platforms like Slack and Monday.com enhance collaboration and
project management, while tools such as Probole AI assist with
generating UML diagrams and visualizing designs. By
integrating natural language processing, machine learning, and

deep learning algorithms these tools complement human efforts,
streamline workflows, and enhance productivity across SDLC
phases.

III. METHODOLOGY, PARTICIPANTS, AND RESEARCH SETUP

 The study is designed to mimic real-world software
development scenarios through a structured, multiphase
approach, integrating tools like ChatGPT, powered by
Generative AI, to enhance key aspects of the SDLC. This study
was conducted as part of software engineering courses, allowing
students to apply theoretical concepts to practical, hands-on
experiences throughout the term. Each phase spans several
meetings throughout the course term, providing students with
ample time to engage in each step of the process. Below is a brief
overview of each phase:

A. Phase 1: Brainstorming and Developing Use Cases

 In this initial phase, participants as students formed teams
and were engaged in brainstorming sessions to propose
software projects based on their interests. This activity allowed
teams to generate unique ideas while fostering creativity and
ownership. The outcome was a diverse set of 12 use case
studies, categorized into web, game, and mobile app
development, covering a range of domains such as education,
healthcare, games, entertainment, and e-commerce.

B. Phase 2: Alternating Stakeholder and Developer Roles

 In this second phase, each team was randomly assigned a
use case study proposed by another team assuming the role of
developers, while the proposing team acted as the stakeholder.
The teams engaged in dual-role interactions to review and
clarify project requirements. These meetings were essential to
ensure that both stakeholders and developers were aligned and
shared a clear understanding of the project’s scope and
objectives.

C. Phase 3: Developer-Generated User Stories

 In this phase, developer teams collaborated over several
meetings to create user stories for each requirement of their
assigned project. These user stories, crafted throughout multiple
sessions, described the system’s functionality and non-
functionality, ensuring that both functional and non-functional
requirements were addressed comprehensively. It is worth
noting that teams were not informed about using AI to generate
user stories until after they had completed and submitted their
own. This element of surprise encouraged genuine reflection as
they compared their human-generated user stories with those
created by AI.

D. Phase 4: AI-Generated User Stories

 In this phase, teams utilized Generative AI-Powered tools
to produce user stories based on the project requirements
discussed in Phases 2 and 3. This approach allowed students to
explore how AI interprets and translates requirements into user
stories, offering a unique perspective that complemented their
own work. Additionally, it’s important to note that while AI-
generated user stories can be efficient and consistent, they may
not fully capture the nuances of user needs and experiences.
Therefore, it’s advisable to use AI-generated user stories as a
starting point and refine them through collaboration with
stakeholders to ensure they accurately reflect user requirements.

3

E. Phase 5: AI vs. Developers: A Comparative Study

In the fifth phase, teams were engaged in several class
meetings focused on comparing and analyzing developer-
created user stories with AI-generated ones. Over multiple
sessions, teams identified similarities, differences, and potential
gaps between the two sets. This process allowed teams to
evaluate AI’s potential in assisting with requirements refinement
and provided valuable insights into how AI can complement and
enhance the work of human developers in improving project
requirements.

F. Phase 6: UML and Class Diagrams Integration

In Phase 6, teams focused on creating UML components and
class diagrams by blending the strengths of AI-generated textual
descriptions with their own work. The AI generated textual
representations of UML components and class diagrams,
outlining the structure and relationships within the system.
However, these descriptions lacked the visual clarity typically
associated with UML diagrams and also omitted key elements
such as interfaces. Teams then refined and expanded upon these
descriptions, adding interfaces and translating the textual
content into visual diagrams. This collaborative process allowed
students to evaluate how AI could assist in the design phase
while also emphasizing the critical role of human judgment and
creativity in shaping the final software architecture.

G. Phase 7: Interactive Scrum-Style Presentations

In Phase 7, each team presented their findings in a scrum-
style format, comparing their developer-created user stories with
those generated by AI. Teams shared insights, highlighting key
similarities, differences, and reflections on the process.
Following each presentation, an engaging Q&A session
encouraged collaboration, allowing teams to ask questions and
exchange ideas. To guide the teams, a detailed rubric outlining
the key points for their presentations was provided before their
scrum presentations.

IV. THREE KEY PROJECTS AND TWLEVE USE CASE STUDIES

 This section presents three representative use case studies

from the 12 assigned ones, spanning web development, game

development, and mobile app development. Each team

categorized user stories to structure the comparison between AI-

generated and team-developed outcomes. Below are three

examples of applications selected from different domains. Each

example includes the application type, project title, a brief

summary, and a sample of features. Due to space constraints, we

do not include all functional and non-functional requirements

for these projects.

A. Use Case Study: Web Application Development

1) Project Title: University Portal Development: FERPA-

Compliant Student and Faculty Access

2) Summary: FERPA, the Family Educational Rights and

Privacy Act, is a U.S. federal law protecting the privacy of

student education records. This project involves developing a

website to ensure FERPA compliance by providing role-based

access to student information for staff and faculty. Key features

include employee timesheet management, advisor access to

transcripts and degree audits, and student access to update

personal information, waivers, and agreements. The site

integrates with a database, supports tab bookmarking, and

offers intuitive navigation. Students can view records, degree

audits, and course registration through the university portal.

Authentication is required for all users to access the site.

3) Sample of Key Features: User Authentication, Faculty

and Advisor Access, Data Base Access, User Experience and

Interface, Security and Access Control.

B. Use Case Study: Game Development

1) Project Title: Mercenary’s Quest: A Dynamic RPG of

Combat, Progression, and Strategy

2) Summary: This project involves developing a dynamic

RPG (Role-Playing Game) where players control a mercenary

character in fast-paced combat. The game features fluid level

design for seamless movement and battles, with enemies

offering group-based challenges and unique skills for strategic

gameplay. Dramatic visual effects enhance the power-fantasy

experience, while character-based attacks add to player

immersion. A progression system allows players to level up

through quests and combat, customize abilities via a branching

skill tree, and upgrade gear to strengthen their character.

3) Sample of Key Features: Combat-Friendly Level

Design, Gameplay Mechanics, Group-Oriented Enemy Design,

Performance Optimization.

C. Use Case Study: Mobile App Development

1) Project Title: Note-Taking App

2) Summary: This project involved developing a simple

note-taking app with key features, including note-taking,

customizable macros, and version control for saved files. The

app also offered QR code generation, AI integration, and online

access, allowing users to view their notes anytime.

3) Sample of Key Features: User Authentication, Create,

Edit, Organize, and Delete Notes, Search and Filter Options,

Reminders and Alerts, Export and Backup Funtionality,

Security and Access Control.

V. A COMPARATIVE ANALYSIS: DEVELOPERS VS AI

 This analysis compares team-generated and AI-generated
requirement specifications and design across three application
domains: web applications, mobile apps, and game
development. The focus is on clarity, completeness, consistency,
and relevance. Team specifications and design are created using
structured frameworks (as outlined in Section III), while AI-
generated specifications rely on carefully crafted prompts. Each
feature is analyzed to compare strengths, weaknesses, and any
innovative ideas introduced by AI.

 AI performed well in web and mobile app development but

struggled with game development, where its specifications and

design failed to capture the domain's complexity and creativity.

The findings highlight areas where the team excelled in

specificity, where AI contributed innovative ideas, and any

common gaps. The evaluation also examines how AI

4

suggestions improved specifications, their adaptability to the

project, and alignment with key criteria.

 The goal is to assess the value of AI in enhancing the

specification and design process and offer recommendations for

balancing AI assistance with human expertise, especially in

creative and complex domains like game development. The

following summary presents findings from 12 use case studies

completed by the teams across the three application domains:

web applications, mobile apps, and game development.

A. A Web Application Development Use Case Study

1) Strengths of Human-Developer Team: The developers’

user stories offered detailed insights into the website’s design

and functionality, demonstrating a strong understanding of the

client’s needs for user experience and interface.

2) Strengths of AI’s Approach: The AI-generated user

stories were general, providing a clear overview of broader user

needs while effectively breaking down user roles and creating

detailed stories for each type of user. Additionally, the AI

generated these stories quickly and efficiently. The AI

generated several user stories related to Student Access

Feastures that the team had missed. Below are examples of user

stories generated by AI and developers.

Student Access Features

• Developers: “As a student, I want to update my personal

information, such as contact details, so my information

stays current.”

• AI: “As a student, I need to view and acknowledge

agreements (like laptop agreements or waivers) directly

from my profile.”

• AI: “As a student, I want to view my academic holds,

eligibility, and awards, so I am aware of my academic

standing.”

Advisor and Faculty Access Feature

• Developers: “As faculty or staff, I need limited access

based on my role to perform my job effectively.”

• AI: “As a student advisor, I need the ability to view the

transcripts and degree audits of the students I advise.”

• AI: “As a faculty member with advising duties, I need

access to academic records, within the limits of FERPA

compliance.”

 The AI version provided greater detail, specifically breaking

down the roles of advisors and faculty members, while the

developers took a broader, more general approach.

3) Common Gaps: The developer team grouped users by

similar roles, whereas the AI generated more specific user

stories. However, the AI missed certain navigation updates

based on client feedback and overlooked critical aspects, such

as database integration, that the developers had also not

considered.

4) Conclusion: In summary, both human and AI-generated

user stories addressed similar requirements but differed in their

level of details AI provided a broad overview, while human

input was essential for refining designs and understanding user

needs. Developers recommend starting with human-generated

stories, leveraging AI for initial drafts, and refining them to

better align with client expectations.

 AI failed to generate any UML diagrams or interface

designs, instead providing textual descriptions. While these

descriptions were helpful for outlining broader requirements,

they lacked the visual clarity needed for detailed design work.

Increased client interaction may also be necessary to capture

specific needs more accurately. While AI can assist with

generating general user stories and initial drafts, human

expertise remains crucial for creating project-specific details,

visual models, and ensuring alignment with unique

requirements.

B. A Game Development Use Case Study

1) Strengths of Human-Developer Team: The developers’

user stories were more comprehensive, clearly outlining the

systems needed to deliver the gameplay experience the clients

envisioned. They effectively conveyed the feel and features of

the game.

2) Strengths of AI’s Approach: AI excelled in specificity,

linking each story directly to a feature requested by the user.
3) Common Gaps: Both versions struggled to capture the

"game feel," which is challenging to express in text. While the

AI’s list format might be more suitable for an investor meeting,

the human-generated stories were better suited for guiding the

development team.

4) Conclusion: AI helped the development team generate a

feature checklist but was less useful for game design. Its

suggestions were generic and lacked originality. Additionally,

it overlooked key project criteria, such as feature completeness

and stability, which were crucial for the client.

C. A Mobile App Development Use Case Study

1) Strengths of Human-Developer Team: The strengths of

the developer teams were consistency, conciseness, relevance,

and completeness. The team ensured that all components were

aligned with the system as a whole, using consistent

terminology and addressing both user and admin functionality.

The team’s model was more consistent in meeting all

requirements for both sides.

2) Strengths of AI’s Approach: AI generated more user

stories per point and quickly captured key aspects, but there

were some gaps.

3) Common Gaps: Both models, developer teams and AI,

missed certain details, often due to unclear instructions or

misunderstandings. Additionally, the AI used terms

interchangeably, which led to confusion.

5

4) Conclusion: AI lacked accuracy and consistency in some

details. The team’s model was stronger in completeness and

relevance. AI is useful for quickly generating key features but

needs careful review, as it can make mistakes or focus on

irrelevant aspects. It’s a helpful tool, but human oversight is

essential.

VI. AI -POWERED TOOLS: ENHANCING THE RESEARCH PROCESS

 ChatGPT, a key AI tool, excels in generating user stories,

summarizing stakeholder requirements, and suggesting task

allocations. However, it fails to generate UML component and

call diagrams, instead providing textual, often fuzzy

descriptions. These tools help Scrum teams stay aligned,

improve productivity, and streamline processes. Several AI-

powered tools are enhancing this analysis. Jira with Automation

and Monday.com help manage and prioritize tasks by

automating routine activities such as updating boards and

generating reports. Slack AI and Microsoft Teams AI improve

communication by summarizing meetings, tracking decisions,

and sharing updates. Otter.ai automates meeting transcriptions,

providing accurate summaries and action items, which enhance

communication and documentation in Scrum.

 While AI’s suggestions were generally useful, it lacked an

understanding of UML best practices, organizing priorities

sequentially instead of by priority tiers. As a result, its output

would need restructuring to align with UML standards and the

architectural design. For future projects, we recommend using

AI to generate initial user stories, followed by refinement based

on UML guidelines, architectural design principles, and client

needs. By structuring the user stories in this manner, each

requirement is categorized based on user roles, with functional

and non-functional aspects clearly defined and prioritized. This

approach helps align the development process with project goals

and stakeholder needs.

VII. CONCLUSION

 This research compared human-developed and AI-generated

requirements elicitation and analysis, highlighting the strengths

and limitations of Generative AI in software development.

Conducted within the context of Software Engineering

courses—where students work as teams playing dual roles as

both developers and stakeholders, the research explored how AI

and human expertise complement each other. The teams

collaborated in teams on 12 use case studies spanning three

application domains: web applications, mobile apps, and game

development, with projects covering diverse areas such as

health, education, gaming, e-commerce, events, sports, and

more.

 Human developers, who were the teams, excelled in

understanding context, stakeholder needs, and detailed

requirements, while AI provided valuable insights, particularly

in structured tasks like web and mobile app development.

However, AI’s limitations were evident in game development,

where it struggled to capture the creativity and complexity

essential for success. Additionally, attempts to integrate AI with

modeling tools like UML diagrams revealed that AI currently

only generates textual descriptions, falling short of producing

the necessary graphical models for system architectures. AI-

powered tools show promise in requirements elicitation and

analysis, especially in structured and contextual domains, but

their challenges in creative fields, such as game development,

call for further refinement. Future research should focus on

improving AI tools or better integration into software processes,

particularly in generating graphical models and architectural

designs. There is also potential to explore how AI can enhance

decision-making, collaboration, and the broader software

engineering lifecycle. This underscores the need for a balanced

approach, where AI complements but cannot replace the creative

and contextual decision-making needed in certain projects.

ACKNOWLEDGMENT

This research was supported by funding from Northwest
Missouri State University. I would like to express my gratitude
to the university for its support in facilitating this study. In
addition, my thanks go to the students enrolled in the Software
Engineering course for their participation in this study.

REFERENCES

Ahmad, K., Bano, M., et al. (2021). What’s up with requirements engineering

for artificial intelligence systems? Proceedings of the 2021 IEEE 29th

International Requirements Engineering Conference (RE), 1–12.
https://doi.org/10.1109/RE51729.2021.00011

Amershi, S., Begel, A., Bird, C., et al. (2019). Software engineering for

machine learning: A case study. Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19), 291–300.

https://doi.org/10.1109/ICSE.2019.00042

Barenkamp, M., Rebstadt, J., & Thomas, O. (2020). Applications of ai in
classical software engineering. AI Perspectives, 2 (1), 1.

https://doi.org/10.1186/s42467-020-00005-4
Bhandari, K., Kumar, K., & Sangal, A. (2023). Artificial intelligence in

software engineering: Perspectives and challenges. 2023 Third

International Conference on Secure Cyber Computing and

Communication (ICSCCC), 133–137.

Briand, L. C., Bianculli, D., Nejati, S., et al. (2021). The case for context-driven

software engineering for AI-based systems. IEEE Software, 38(6), 51–60.

https://doi.org/10.1109/MS.2021.3106993
 https : / / doi . org / 10 . 1109 /ICSCCC58608.2023.10176436

de Oliveira Santos, P., Figueiredo, A. C., et al. (2024). Impacts of the usage of

generative artificial intelligence on software development process.
Proceedings of the 20th Brazilian Symposium on Information Systems

(SBSI ’24), 1–9. https://doi.org/10.1145/ 3658271.3658337

Habiba, U., Haug, M., et al. (2024). How mature is requirements engineering
for ai-based systems? a systematic mapping study on practices, challenges,

and future research directions. Requirements Engineering, 29, 567–600.

https://doi.org/10.1007/s00766-024-00432-2
Heyn, H.-M., Knauss, E., et al. (2021). Requirement engineering challenges for

AI-intense systems development. 2021 IEEE/ACM 1st Workshop on AI

Engineering – Software Engineering for AI (WAIN), 89–96.
https://doi.org/10.1109/WAIN52551.2021.00020

Horkoff, J., Hadar, I., et al. (2023). AI-assisted software engineering: Promises,

pitfalls, and research opportunities. ACM Computing Surveys, 55(7), 1–

38. https://doi.org/10.1145/3579777

Khlood, A., Mohamed, A., et al. (2023). Requirements engineering for artificial
intelligence systems: A systematic mapping study. Information and

Software Technology, 158, 107176.

https://doi.org/10.1016/j.infsof.2023.107176
Lorenzoni, G., Alencar, P., Nascimento, N., & Cowan, D. (2021). Machine

learning model development from a software engineering perspective: A

systematic literature review. arXiv preprint, arXiv:2102.07574.
https://arxiv.org/abs/2102.07574

Marar, H. (2024). Advancements in software engineering using AI. Computer

Software and Media Applications, 6(3906).
https://doi.org/10.24294/csma.v6i1.3906

6

Smith, J., Johnson, E., Davis, M., et al. (2024). Exploring the future of software
engineering with ai. Journal of Software Engineering Research, 40 (5),

123–145. https://doi.org/10.1016/j.jsser.2024.01.001

Terragni, V., Roop, P., & Blincoe, K. (2024). The future of software
engineering in an AI-driven world. Journal of Software Engineering.

https://doi.org/10.48550/arXiv.2406.0773

Todorov, P. G. (2022). The application of artificial intelligence in software
engineering. International Journal of Advanced Multidisciplinary

Research Studies, 2(5), 835–842. https://doi.org/10.2139/ssrn.4943407

Yoshioka, N., Husen, J., et al. (2021). Landscape of requirements engineering
for machine learning-based AI systems. Proceedings of the Asia-Pacific

Software Engineering Conference Workshops (APSECW’21), 5–8.

https://doi.org/10.1109/APSECW53869.2021.00011

