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ABSTRACT 

Traditional epidemic models often fall short in capturing the 

complexity of human behaviors, a gap highlighted by the COVID-19 

pandemic. This research explores the integration of large language 

models (LLMs) and agent-based modeling (ABM) with the 

Susceptible-Exposed-Infectious-Recovered (SEIR) framework to 

enhance epidemiological simulations. By leveraging LLMs, this study 

aims to develop a more dynamic and realistic model of disease 

transmission that reflects individual and community-level interactions. 

Our methodology utilizes the HPC-powered Mesa-Geo framework to 

incorporate geographically informed human agents (GeoAgents) and 

simulates disease spread through a detailed SEIR model, enriched by 

the advanced capabilities of the GPT4-XL Flan Alpaca model for 

generating nuanced human interactions. Preliminary results indicate 

that such an integration can effectively simulate complex social 

behaviors and adherence to public health measures, suggesting a 

promising direction for future epidemiological modeling. This 

approach not only addresses critical gaps in traditional modeling but 

also sets the stage for further research that could enhance public 

health strategies through more accurate and adaptive simulations.  

Keywords: Disease Modeling, Agent-based Modeling, Large 

Language Models (LLMs), Public Health, Epidemiological 

Simulation. 

I. INTRODUCTION 

All The COVID-19 Pandemic has made clear the essential 
role of epidemiological modeling in understanding and 
managing infectious diseases on a global scale. Disease 
transmission models, specifically those incorporating the 
Susceptible-Exposed-Infectious-Recovered (SEIR) framework, 
have been used to predict the spread of disease and inform public 
health decisions (Novakovic & Marshall, 2022). These models 
simulate the contribution of individual behaviors and 
interactions towards the broader dynamics of disease 
transmission within populations. 

Despite their widespread use, traditional approaches to 
epidemic modelling have difficulties in capturing complex 
human behaviors, as they typically utilize system dynamics or 
ordinary differential equations which incorporate aggregated 
variables that represent the population of interest (Miksch, Jahn 
et al., 2019). This level of abstraction allows for faster and more 
efficient model development and analysis while giving the 
researchers a high level of control, but in turn sacrifices some 
degree of realism (Jackson, Lewis et al., 2016). The COVID-19 
pandemic highlighted these limitations, where traditional 
Susceptible-Infectious-Removed (SIR) models received 
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criticism for oversimplifying target phenomena (Eubank, 
Eckstrand et al., 2020). The oversimplification combined with 
the varied compliance with health guidelines across different 
communities raised concerns over the effectiveness of SIR 
models in predicting the development of a disease outbreak 
(Cokljat, Cruz et al., 2024). 

II. RELATED WORKS 

Agent-based models (ABMs) offer an alternative approach 
to epidemiological modeling, focusing on individual-based 
simulations that attempt to accurately capture agent behaviors. 
ABMs are designed to reproduce an epidemic as it naturally 
unfolds, giving insights into the mechanics underlying process 
of disease transmission. Perez and Dragicevic (2009) introduced 
an agent-based modeling approach using geographic 
information systems that uses individuals’ interactions in a 
geospatial context to model the spread of disease. Since then, 
there has been more research on the implementation of ABMs 
as disease transmission models, modeling specific diseases such 
as dengue (Wu, Peng et al., 2023) or Covid-19 (Novakovic & 
Marshall, 2022). Hunter, Mac Namee and Kelleher (2018) 
showed that ABMs provide information that is not available 
using an equation-based model and the capture of agent 
interactions gives a better overall view of an outbreak. Though, 
a notable limitation of ABMs is the lack of data for unknown 
parameters of human behaviors such as contact patterns or 
frequencies, creating a risk of the model simulating the wrong 
dynamics (Miksch, Jahn et al., 2019). 

Recent advancements in artificial intelligence (AI), 
specifically in the forward development of large language 
models, have presented a novel opportunity to address these 
shortcomings. Park, O’Brien et al. (2023) introduced a 
framework for realistic simulations of human behavior through 
their generation of a town populated by LLM-powered agents. 
While the research is text-based and agents move along a graph 
of nodes, the demonstration of nuanced human behavior by an 
LLM has significant implications for future research involving 
LLM-generated human interaction. Later, LLMs have been 
shown to have the capability to enhance ABMs by simulating 
complex human-like decision-making processes through Smart 
Agent Based Modeling (SABM) framework (Wu, Peng et al., 
2023). The work therein facilitates the novel idea of agent-based 
modeling in natural language and an ‘a priori modeling 
paradigm’ not seen in traditional ABMs. 
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III. RESEARCH MOTIVATION 

This study proposes the integration of LLMs into the SEIR 
ABM framework to more accurately model intricate patterns of 
human communication and behavior. By utilizing LLMs to 
simulate realistic social interactions, we hope to create a more 
detailed and dynamic representation of individual responses to 
public health measures and scenarios. 

The goal of this research is to develop a smart human-level 
model which incorporates spatial information of human agents 
combined with simulated dialogues and decisions generated by 
LLMs to allow for a more granular analysis of disease spread 
mechanisms. For example, understanding how individuals 
might react to certain disease prevention policies and how that 
could affect the spread of disease. Moreover, the use of LLMs 
within this context addresses a critical gap in traditional 
epidemiological models by incorporating an element of adaptive 
learning. As the model runs, it continually refines its generated 
actions based on past events, mirroring human adaptation to 
evolving circumstances. This capability is particularly important 
in the face of novel infectious diseases, where behavior and 
policies may change rapidly in response to new information. We 
hypothesize that LLM-enhanced ABMs will provide a more 
nuanced simulation of human interactions, leading to better 
alignment between model predictions and observed epidemic 
patterns. This research addresses a critical gap in 
epidemiological modelling while pioneering an interdisciplinary 
approach merging computational linguistics with public health 
modeling techniques. 

IV. RESEARCH METHODOLOGY 

Our project leverages the Mesa-Geo framework, a Python-
based platform designed for building, visualizing, and analyzing 
agent-based models (ABMs) with geographical data using high 
performance computing tools. This enables our ABMs to 
incorporate GeoAgents, which are agents with geographical 
attributes like geometry and a coordinate reference system 
parameter. Our model primarily utilized the geometry aspect of 
GeoAgents. We further enriched our model’s capabilities by 
integrating DeClaRe Lab’s GPT4-XL Flan Alpaca Model’s, a 
large language model with 3 billion parameters accessed 
through the Python transformers library. 

Our ABM simulates the spread of infectious diseases by 
implicitly utilizing the Susceptible-Exposed-Infectious-
Recovered (SEIR) model shown in Perez and Dragicevic 
(2009), a compartmental framework in epidemiology that 
classifies individuals into distinct stages of disease progression: 
susceptible, exposed, infectious, recovered, and an additional 
state for deceased agents. Each agent in our model navigates 
these states, with transitions dictated by specific rates that define 
the latency period, infectious period, recovery, or death. The 
model parameters of our ABM consist of population size, 
percent of initial infected, exposure distance, incubation 
duration, infection duration, infection distance, death rate, and 
infection rate. We utilized the visualization capabilities of Mesa-
Geo to give the user freedom in deciding various model 
parameters using sliding bars. 

The model architecture comprises three classes – human 
GeoAgent, room GeoAgent, and Model – each integral to the 
dynamics of our simulation. 

A. Human GeoAgents 

The human GeoAgents are the main components of the 
model, they move around, perform generated actions, and spread 
disease between each other. Similar to the technique used in 
Park, O’Brien et al. (2023), each agent is generated with a short 
description of their personality which is used to inform future 
actions. We also defined several parameters for the agents: 
movement range, a memories array, and a compressed memories 
array. The movement range value was hard-coded to be 1 in the 
model to simplify the simulation process, making it easier to 
refine before expanding the movement capabilities. The class 
contains several main methods: 

1) Move: Moves agent to specified coordinate 

2) Update Memories: Using an LLM, generate a rating to 
each action the agent has performed that step and update it into 
their memories array. The response is parsed for the first integer 
by the Python re library. Based on the update memories function 
by. 

3) Compress Memories: Top x number of memories by 
rating are saved in an array to be used when deciding actions in 
future steps based on the update memories function by. 

4) Infect: Checks if the agent is infectious, and if so, 
determines infection probability towards neighbors using 
infection rate and spreads disease based on those probabilities. 

5) Step: Runs the infect method and the compress memories 
method. 

B. Room GeoAgents 

The room GeoAgent is the space that the human agents are 
allowed to move around within. It also generates the interactions 
between agents within it. We chose to have the room agent 
generate the activities in a batch as it would be much more 
computationally expensive to have each agent generate their 
individual actions. The class is initialized with a room type, 
activity description, and an array of its occupants. The class 
contains one essential method, step, which has several different 
tasks: 

1) Generates a list of activities for each person within the 
room using Flan Alpaca with the short description of each 
agent’s personality, each agent’s compressed memories, the 
room type, and activity description within the prompt. 

2) Then, it feeds that result back into the LLM, and generates 
a list of who interacts with who in the room based on the 
activities. 

3) The result is parsed and agents who share activities are 
brought together physically within the room. The LLM then 
generates a new coordinate within movement range for each 
agent that did not share an activity with another. 

4) The memory array of each human agent is updated, and 
the update memories method is called for each human. 
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C. Model Agent 

The model class is a fundamental component of the model 
that orchestrates the behavior of the simulation, managing the 
setup and execution of the model. The class initializes the human 
and room agents and integrates it into its system. The model 
class hosts a GeoSpace, which gets populated by the human and 
room agents that are kept track of by the model. The class also 
adds each agent to its scheduler, which decides the order of step 
function activation for each agent. We chose to use a random 
scheduler, where each agent’s step function is called in a random 
order, as it best simulates reality. Further, the class hosts an array 
of disease prevention techniques, designed by the user, which 
are taken into consideration. 

At step 0 of the model, the model agent initializes the room 
agent then initializes the specified number of human agents, 
placing them within the confines of the room agent. After, the 
model infects the user specified number of human agents. Each 
step, the step method of the room agent is called, then the step 
methods of the human agents are called. 

V. RESULTS AND DISCUSSION 

    The initial runs of our agent-based model, enhanced with 

large language models, have successfully demonstrated the 

integration’s potential to simulate complex social interactions 

that influence disease transmission dynamics. Currently, we 

have limited our testing to around 10 human agents, as the 

computational costs of more agents and their corresponding 

LLM calls slow down the model dramatically. This way, we 

can focus on the refinement of the model’s core mechanics 

before scaling up. Although the parameters were set arbitrarily 

to explore the functionality of the model, the results in Figure 1 

have been promising, showing that the model can simulate 

nuanced agent behaviors based on dynamic interactions and 

health protocols.  

    The preliminary simulations highlight the model’s capability 

to simulate various hypothetical scenarios, adapting to changes 

in health protocols and past events that influence agent 

behavior. As shown in Figure 2, the LLM can generate unique 

personalities for each agent in the model. Figure 3 shows that it 

is then able to generate actions for each agent that try to follow 

the health protocol of ‘social distancing’ shown in Figure 2. 

Finally, Figure 4 shows the generated coordinates for each 

agent. Upon closer inspection, notice that the agents that have 

actions with each other from Figure 2 are brought together 

coordinate wise. Agents p20 and p16 share an action, and thus 

their resulting coordinates are (4,4) and (3,4). The same can be 

seen with p17 and p18, where their resulting coordinates are 

(7,7) and (7,8). The remaining individuals were then instructed 

to move while considering the health protocol of ‘social 

distancing’ and their movement range constraint. The results 

underscore the potential of LLMs to enhance the realism in 

simulations by generating lifelike and responsive agent 

behaviors, which could be crucial for more accurate public 

health planning and response analysis. 

 

 
 

Figure 1. Disease transmission model user interface. Upper 

image is an example GeoSpace visualization (Blue agents are 

susceptible; Red agents are Infected). Lower image is an 

example graph of percent of each status at each step. 

VI. CONCLUSION AND FUTURE WORK 

    In our work, we have explored the integration of large 

language models into SEIR agent-based models to enhance the 

realism of social interactions in epidemiological simulations. 

This approach aims to better model human-like 

communications and decision-making processes, which are 

crucial for accurately predicting disease spread dynamics. The 

preliminary results are promising, showing that LLM-enhanced 

ABMs can capture complex interaction patterns and adhere to 

public health measures effectively.  

    Given the exploratory nature of the initial simulations, the 

results are intended to illustrate the conceptual viability of 

integrating LLMs into ABMs for epidemiological research. 

They serve as a foundation for future research, which will 

involve more fine-tuning of parameters, validation against real-

world data, and a detailed scenario analysis to rigorously 

evaluate the model’s predictive power and applicability. In an 

upcoming paper, we plan to scale up the model to handle larger 

populations and refine the integration to improve the model’s 
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predictive accuracy and reliability. We will extend the 

application of these models to diverse epidemiological 

scenarios and further validate the simulations with real-world 

data. The current research opens up new possibilities for the use 

of AI in public health and epidemiology, potentially leading to 

better disease management and intervention strategies. 

 

 
 

Figure 2. Generated personalities from LLM. 

 

 
 

Figure 3. Generated actions from LLM. 
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Figure 4. Generated coordinates from LLM. 
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This is a library study room. Currently there is a club event happening in this room.
The people have been instructed to practice social distancing.
There are 10 people in this location. Currently it is 10:00am. We know the following
about people:
p11: I'm p11, a 30-year-old female from Solana Beach, CA. I'm an amateur 
astronomer and software developer who loves discussing the latest technology trends 
and stargazing during clear nights.
p12: I'm p12, a 25-year-old female from Carlsbad, CA. I enjoy surfing, yoga, and 
blogging about my travel adventures. I'm always eager to share stories from my 
journeys and learn about new cultures.
p13: I'm p13, a 35-year-old male from San Clemente, CA. As a professional chef, I 
love to create fusion dishes that blend different culinary traditions. I often host 
cooking classes at local community centers.
p14: I'm p14, a 22-year-old female from Oceanside, CA. I study environmental 
science and am passionate about wildlife conservation. I volunteer regularly at 
animal rescue centers and advocate for sustainable practices.

p11: Engages from afar in a conversation about recent tech advancements.
p12: Shares her travel experiences loudly from her designated spot, attracting 
attention but maintaining distance.
p13: Describes his latest culinary creations, using a projector to show images.
p14: Shows a digital presentation of wildlife she's helped conserve.
p15: Displays recent landscape photos on a shared screen, pointing out details from a 
distance.
p16: Provides ambient music by playing her violin softly, occasionally walking near 
p20 to coordinate on volume.
p17: Discusses architectural designs on his laptop, inviting p18 for a closer look to 
discuss collaborative possibilities in design.
p18: Explains graphic design tips using visuals, standing at a distance but projecting 
her voice.
p19: Organizes a mini-seminar on entrepreneurial skills, maintaining distance as he 
moves around to engage with listeners.
p20: Talks about the importance of social support, walking up to distribute printed 
resources to attendees.


