
 Tiako P.F. (ed) Competitive Tools, Techniques, and Methods. Chronicle of Computing. OkIP. APDC24#6 

 © 2024 Oklahoma International Publishing                   https://doi.org/10.55432/978-1-6692-0007-9_1 

1                                  Presented at the 2024 OkIP International Conference 

 on Advances in Parallel and Distributed Computing (APDC)  

in Oklahoma City, OK, USA, and Online, on April 3, 2024 

Scheduling for high performance computing with reinforcement learning 

Scott Hutchisona*, Daniel Andresena, William Hsua, Benjamin Parsonsb, Mitchell Neilsena 

aKansas State University, 110 Anderson Hall, 919 Mid-Campus Drive, Manhattan, KS 66506 
bEngineering and Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180 

 

ABSTRACT 

Job scheduling for high performance computing systems involves 

building a policy to optimize for a particular metric, such as 

minimizing job wait time or maximizing system utilization.  Different 

administrators may value one metric over another, and the desired 

policy may change over time.  Tuning a scheduling application to 

optimize for a particular metric is challenging, time consuming, and 

error prone.  However, reinforcement learning can quickly learn 

different scheduling policies dynamically from log data and effectively 

apply those policies to other workloads.  This research demonstrates 

that a reinforcement learning agent trained using the proximal policy 

optimization algorithm performs 18.44% better than algorithmic 

scheduling baselines for one metric and has comparable performance 

for another.  Reinforcement learning can learn scheduling policies 

which optimize for multiple different metrics and can select not only 

which job in the queue to schedule next, but also the machine on which 

to run it. The agent considers jobs with three resource constraints 

(CPU, GPU, and memory) while respecting individual machine 

resource constraints. 

Keywords: High Performance Computing, Scheduling, 

Reinforcement Learning. 

I. INTRODUCTION 

Scheduling for High Performance Computing (HPC) 
systems is typically done using a batch scheduler.  In most HPC 
systems, users will submit their jobs to a centralized job 
scheduler that will reserve and assign HPC resources according 
to the resources requested by the users at submission time.  
Typically, the system administrators managing the HPC system 
will configure the scheduler using an optimization goal, or 
metric, such as maximizing HPC resource utilization, 
minimizing job wait time, maximizing job throughput, etc.  The 
optimization goal of system administrators may change from 
one time period to the next, and different HPC administrators 
may value one metric over another.  Correctly configuring the 
batch scheduler to optimize for different metrics is challenging, 
and optimizing for one metric may adversely affect another.  
This research shows that reinforcement learning can learn 
different scheduling policies to optimize for different goals 
while remaining competitive with or performing better than 
algorithmic scheduling baselines. 

Although batch scheduling has been shown to be an NP-
Hard problem (Ullman, 1975), some job schedulers compute job 
priorities based on attributes of the submitted job.  Examples of 
algorithmic scheduling based on job attributes include First 
Come First Serve (FCFS), Shortest Job First (SJF), Oracle SJF, 

and Best Fit Bin Packing (BFBP). More details of these 
algorithms are provided in Section II.A.  More sophisticated 
schedulers use advanced techniques such as utility functions or 
machine learning to make their scheduling decisions.  Recently, 
researchers have looked to Reinforcement learning (RL), one of 
the machine learning paradigms, to learn scheduling policies for 
HPC scheduling applications.  With RL, we allow a machine 
learning agent to make scheduling decisions and provide 
feedback on its performance using a reward.  When trained 
iteratively, the agent can learn a scheduling policy to maximize 
the reward it receives.  When this reward is tied to the desired 
scheduling optimization goal, the RL agent makes scheduling 
decisions to optimize for the chosen goal. The questions this 
research set out to answer are as follows: 

• Can RL provide a high-quality scheduling policy 
comparable to or better than algorithmic scheduling 
baselines? 

• Is the learned policy only effective on the workload 
used for training, or can it generalize and remain 
effective on other previously unseen workloads? 

The remainder of this paper is structured as follows:  Section 
II provides details about the background and related works, as 
well as further details of the implementation of this work.  
Section III discusses the methodology and a comparison of the 
performance of a RL scheduling agent with algorithmic 
scheduling baselines.  Section IV discusses the results of the 
experiment, the statistical analysis done, and the conclusions 
reached.  Section V expands upon the challenges encountered in 
the work, as well as prospects for future work.  Finally, section 
VI offers final concluding remarks. 

II. BACKGROUND AND RELATED WORKS 

A. Algorithmic Scheduling Baselines 

 The baseline scheduling algorithms to which the RL agent’s 
performance will be compared are First Come First Serve 
(FCFS), Shortest Job First (SJF), Oracle SJF, and the Best Fit 
Bin Packing (BFBP) Algorithm.  For FCFS, jobs are scheduled 
strictly in the order in which they arrive.  If no machine in the 
HPC cluster has sufficient resources to execute the first 
chronological job in the queue, the scheduler waits until there 
are adequate resources to begin the execution of the first job in 
the queue.  SJF will sort the job queue by requested job run time 
and begin running the shortest job that some machine in the 
cluster has adequate resources to execute.  In practice, users of 
the HPC system tend to overestimate the amount of time and 
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resources their jobs require, as they do not want their job’s 
execution to be halted by exceeding their requested resources.  
Overestimation of resources by the users, including requested 
job time, tends to degrade the performance of scheduling 
algorithms like SJF.  Oracle SJF behaves like SJF except it sorts 
the job queue by actual run time instead of requested run time.  
This information cannot be known by the scheduler at job 
submission time when the scheduler is making its decisions, and 
scheduling using this information provides a decent lower bound 
for the average job waiting time.  BFBP is perhaps the most 
relevant scheduling algorithm as it powers some scheduling 
applications in use on actual HPC systems today, like Slurm 
(Jette & Grondona, 2003).  BFBP considers all jobs in the queue 
and the available resources for each machine in the cluster.  
BFBP selects the (job, machine) pair that will result in the fewest 
resources remaining for some machine in the cluster and begins 
executing that job on the chosen machine.  This has been shown 
to take no more than ⌊1.7 ∗ 𝑂𝑃𝑇⌋  machines (Dósa & Sgall, 
2014), where OPT is the minimum number of machines required 
for a particular workload.  Not only does this scheduling 
algorithm power some modern scheduling applications, but it 
also serves to provide a decent upper bound for the HPC cluster 
utilization metric for any particular workload. 

B. Reinforcement Learning for Policy Optimization 

 In general, a RL agent is attempting to choose the best action 
to maximize its reward given the current state of the 
environment.  The agent has knowledge of the environment 
through its observation space, and it sees the environment in 
state S at time t.  The agent has certain actions available to it 
through its action space.  The agent chooses action A at time t.  
This action will change the environment to a new state S at time 
t+1.  The agent then receives some reward R at time t+1 for its 
action.  Based on the reward, the weights for the neural network 
powering the agent’s decision-making process are updated and 
the process repeats until the reward converges to a maximum.  
The policy the agent learns over time will maximize the 
expected reward for a particular action given the current state of 
the observation space.  The general framework for RL is shown 
in Fig. 1. 

 

Fig. 1. The general framework for reinforcment learning 

 In the context of using RL to schedule for HPC systems, the 
observation space consists of the jobs in the job queue and the 
resources available on each machine.  The actions available to 
the agent are selecting a particular job from the job queue and a 
machine from the cluster on which to run it.  When the reward 
is tied to the optimization goal (job wait time or HPC 
utilization), the agent will learn to select the best job from the 
job queue and the machine on which to run it that will optimize 
for the desired metric.  Metrics may be maximized (as with HPC 
system utilization) or minimized (as with job wait time).  It was 

the goal of this research to ascertain if RL could learn multiple 
scheduling policies to optimize for different metrics, and if those 
policies could compete with algorithmic scheduling baselines on 
new, never-before-seen workloads.  Additional details about the 
implementation used for this research can be found in Section 
II.E. 

 Proximal Policy Optimization (PPO) (Schulman, Wolski, 
Dhariwal, Radford, & Klimov, 2017) is an RL technique 
developed to improve upon and address some shortcomings in 
previous RL techniques.  PPO is an on-policy technique, 
meaning that each update of the policy only uses data collected 
while acting according to the most recent version of the policy.  
The policy maps the states in the environment to actions taken 
when in those states.  Generally, an objective function in RL 
returns the expected reward for an action in a given state.  Rather 
than using gradient ascent on the objective function to optimize 
the policy (a computationally expensive process), PPO employs 
a surrogate objective function which gives a conservative 
estimate for how much the objective function will change as a 
result of a policy update.  Large policy updates are penalized via 
clipping, resulting in quick training convergence and good 
performance for many tasks. 

C. HPC Scheduling Using Machine Learning 

Scheduling for HPC systems using RL techniques has been 
a topic of much research interest recently.  One of the first 
attempts to do HPC scheduling with RL was accomplished with 
DeepRM (Mao, Alizadeh, Menache, & Kandula, 2016).  Mao et 
al. showed that RL can learn multiple scheduling policies to 
compete with state-of-the-art heuristics when scheduling HPC 
jobs. Their RL agent uses gradient decent on policy parameters 
to maximize the expected cumulative discounted reward.  It was 
shown to adapt to different conditions, converge quickly, and 
learn sensible scheduling strategies. 

 RLSchert (Wang, et al., 2021) was a more recent 
project using RL to perform HPC scheduling.  This project 
included a remaining time predictor to better estimate how long 
a job will take in order to make better scheduling decisions.  
RLSchert incorporated requested memory and requested CPUs 
as resource constraints and learns a policy to select or kill jobs 
according to their status and estimated remaining time using the 
PPO technique. 

Another RL HPC scheduler is A2cScheduler (Liang, Yang, 
Jin, & Chen, 2020).  This technique uses the actor-critic deep-
RL technique to perform scheduling and resource management 
for HPC systems.  A2cScheduler also considers two job 
resources constraints, requested memory and requested CPUs. 

The research most closely related this work is RLScheduler 
(Zhang, Dai, He, Bao, & Xie, 2020).  Zhang et al. showed the 
viability of using RL and PPO to learn multiple scheduling 
policies for both real and constructed HPC workloads.  
However, the neural network powering RLScheduler only 
selects the next job to be started from the job queue.  The 
machine on which the job is run is not selected by the agent, and 
the job is handed off to the cluster for execution on some 
machine.  Also, each machine in the cluster is limited to running 
only one job at a time, which is a technique employed by some 
HPC systems.  However, many HPC systems allow the 
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allocation of multiple jobs to a single HPC node as resources 
allow, resulting in increased job throughput and higher HPC 
utilization.  Additionally, RLScheduler only considers two 
resource constraints for each job, the job’s requested memory 
and number of requested CPUs.  It was the goal of this research 
to build upon what was accomplished with RLScheduler by 
including the following: 

• Increase the number of constraints each job can 
request from two to three by allowing jobs to 
request memory, CPUs, and GPUs. 

• Allow multiple jobs to execute on a single HPC 
machine while still respecting the machine’s total 
resource constraints. 

• Allow the RL agent to select not only a job from 
the queue, but also the machine in the cluster on 
which to run it. 

Accomplishing these should bring HPC scheduling with RL 
one step closer to implementation on an actual HPC system. 

D. Workload Specification with Three Resource Constratints 

The jobs given to the scheduler to be scheduled comprise the 
workload.  There are numerous HPC workloads available for 
use, and we have access to the log data of a local university HPC 
system to construct workloads for our use.  A trend with HPC 
scheduling research thus far seems to be the consideration of 
only two resource constraints per job: the amount of requested 
memory and the number of requested CPUs.  We believe this 
stems from a limitation of the Standard Workload Format 
(SWF) (Chapin, et al., 1999) method of specifying workloads 
for HPC systems.  The SWF has become the de facto standard 
for HPC scheduling research and is used extensively in this 
space.  Although the resource constraints included in the SWF 
are certainly important, analysis of our local HPC system has 
shown that jobs requesting GPU resources have become 
increasingly prevalent.  This trend will likely continue as future 
AI researchers and others capitalize on GPUs and other 
hardware accelerators.  In fact, on our HPC system, we have 
frequently observed low GPU availability being a key factor in 
extending job wait time.  Alternatives to the SWF have been 
proposed, such as the Modular Workload Format (MWF) 
(Corbalan & D’Amico, 2021).  The MWF incorporates not only 
non-classical computing resources (like GPUs), but also 
additional new job profiles as well.  For this reason, 
consideration of a third resource constraint, requested GPUs, 
was seen as important for this work, as it is often overlooked in 
prior HPC scheduling research.  Workloads were specified using 
a simple comma separated value (CSV) format, which included 
the following information about each job: JobName, 
RequestedMemory, RequestedCPUs, RequestedGPUs, 
RequestedDuration, ActualDuration, and SubmitTime.  The 
characteristics of the machines comprising the simulated HPC 
cluster were specified using another CSV file with the following 
attributes: MachineName, TotalMemory, TotalCPUs, and 
TotalGPUs. 

E. OpenAI Gym Environment 

OpenAI Gym (Brockman, et al., 2016) is an open-source 
Python library and Application Programming Interface (API) 

for developing and comparing RL algorithms.  OpenAI Gym 
specifies methods for implementing a custom environment to 
explore machine learning tasks.  Within the custom 
environment, the observation space, action space, step function, 
and various others are defined.  The RL agent’s neural network 
provides a mapping from the observation space to the action 
space and allows the agent to maximize the expected return for 
its available actions.  Invalid action masking (Huang & Ontañón, 
2020) eliminates any impossible or clearly unproductive actions.  
In the context of our HPC Scheduling problem, invalid action 
masking removes any (job, machine) actions for which the 
machine does not have adequate available resources to run the 
job.  Invalid action masking reduces the number of possible 
actions the agent must consider and has been shown to improve 
convergence time during training, as the agent will not attempt 
to schedule a job on a machine that cannot run it.  If the agent 
were to choose an invalid action, the state of the observation 
space would not change, and the workload would not move any 
closer towards completion.  Stable Baselines3 (SB3) (Raffin, et 
al., 2021) is a Python library that provides a set of reliable 
implementations of RL algorithms, and this research 
implemented a custom OpenAI Gym environment using a self-
implemented discrete event simulator (DES) representing the 
HPC scheduling problem.  The SB3 PPO with invalid action 
masking algorithm was used to train a RL agent, and then its 
performance was compared to algorithmic scheduling 
algorithms implemented in the DES.  The DES keeps track of 
the current simulation time step and maintains lists for future 
jobs, queued jobs, running jobs, and completed jobs.  As the 
simulation progresses and simulation time advances, jobs move 
through the lists in the DES, machines track their currently 
available resources.  Upon simulation termination, the desired 
metrics can be calculated and compared to one another 
depending on the algorithm used to schedule the jobs to the 
simulated HPC. 

 The custom OpenAI Gym environment provides the 
definitions of the observation space and the action space.  The 
observation space consisted of the first n schedulable jobs in the 
job queue.  A job was considered schedulable if at least one 
machine in the cluster had adequate resources to schedule it.  
Many scheduling applications limit a maximum queue depth to 
search for jobs to schedule, and the code for this research was 
written to allow adjustment of the queue depth easily.  The 
action space selects an individual schedulable job from the job 
queue and a machine on which to run it.  This structure is 
depicted in Fig. 2.  This was initially implemented as a multi-
discrete action space, however, many scheduling algorithms 
require a discrete action space.  This 2D action space was 
converted to a 1D action space similar to converting a 2D array 
into a 1D array using the following formula:  

1D_action = (machine_index * num_machines) + job_index  

Fig. 2. The observation space and action space of the custom OpenAI Gym 

environment 
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 The reward returned at each training step is tied to the 
desired policy.  As implemented, the SB3 algorithm will 
maximize this episodic reward, so when minimizing job queue 
time, the reward per step was reward = 0 - avg. job wait time.  
When maximizing system utilization, reward = HPC System 
utilization.  An episode consists of scheduling every job in a 
workload, and the cumulative reward across the entire episode 
is used to update the RL agent’s learned scheduling policy.  

III. METHODOLOGY 

To evaluate the efficacy and the performance of using PPO 
with invalid action masking when scheduling jobs for HPC 
systems, the follow steps were taken: 

• Construct 20 sets of jobs consisting of high 
utilization jobs (jobs requesting more than 20 
CPUs) and modify the job’s submission times to be 
the same.  Add 2% of jobs requesting any number 
of GPU resources to the set. 

• For each set of constructed jobs, train an agent 
using PPO with invalid action masking to minimize 
job wait time and another agent to maximize 
system utilization. 

• Select 23 days’ worth of jobs from HPC log data of 
days with approximately the same number of 
submitted jobs (1000 +/- 100 jobs). 

• Schedule these 23 days using the algorithmic 
baselines. 

• Use the trained agent to schedule these 23 days and 
compare its performance to the algorithmic 
scheduling baselines. 

• Conduct analysis of variance (ANOVA) to 
determine if the differences of the means of the 
scheduling methods is statistically significant. 

• For agents trained to minimize average job wait 
time, conduct pairwise t-tests between the agent’s 
performance and the algorithmic baseline’s 
average job wait time for the 23 days. 

• For agents trained to maximize HPC system 
utilization, conduct pairwise t-tests between the 
agent’s performance and the algorithmic baseline’s 
average HPC system utilization for the 23 days. 

A. Training Workload Construction 

To construct the training workload, jobs from log data for 
the local HPC systems were sampled.  Zhang et al. noted that the 
workload trajectory was important for productive training, and 
they utilized trajectory filtering to select only job traces that 
were productive for training their RL agent.  Various training 
workloads from local HPC log data were tested for training, and 
the most productive and consistent training came from selecting 
“large jobs” that requested more than 20 CPUs.  Training 
workloads were constructed by randomly selecting 2000 jobs 
requesting more than 20 CPUs from HPC log data, and 
randomly adding 40 jobs requesting any number of GPUs.  This 
2% addition of jobs requesting GPUs aligns with the historic 
level of such jobs from our HPC system.  Then the jobs were 

shuffled, and modifying the submission time for all jobs such 
that they were submitted simultaneously.  Essentially, we 
wanted challenging workloads for the scheduler, which would 
reward good scheduling decisions and punish poor ones.  Each 
of the 20 workloads constructed was used to train a RL agent 
using two metrics: minimizing the average job wait time and 
maximizing HPC system utilization. 

B. Evaluation on Actual Workloads 

Again, log data was used to find days which had roughly the 
same number of submitted jobs.  We sought days with enough 
jobs that scheduling would be a non-trivial activity for our 
simulated cluster of nine machines.  Searching log data for days 
with 1000 +/- 100 submitted jobs yielded 23 different days from 
the log data considered.  The resources requested, the 
submission time, and the actual run time for these jobs remained 
unchanged from the log data, and the 40 different agents were 
used to schedule the 23 days using the metric on which they were 
trained.  The algorithmic baselines also scheduled the 23 days to 
provide a basis for comparison of the performance of the RL 
agent’s scheduling. 

C. Statistical Analysis 

ANOVA (Girden, 1992) was utilized to determine if there 
was a statistically significant difference between the means of 
the models and the algorithmic scheduling baselines.  Next, 
pairwise t-tests (Student, 1908) were conducted between each 
algorithmic scheduling baseline and the model to determine if 
difference between the means of the models and the algorithmic 
baseline was statistically significant.  A significance level of 
95% (∝= 0.05) was used for all statistical tests. 

IV. RESULTS 

A. Training Convergence 

Figure Fig. 3 shows the training curves for two agents trained 
on one set of constructed jobs.  One agent was trained to 
minimize average job queue time, and the other was trained to 
maximize HPC system utilization.  The training for the depicted 
day converges quickly to some maximal value, indicating that 
the agent has learned how to optimally schedule a chosen day 
for its given metric.  Training was accomplished using HPC 
resources in parallel, and training each agent took no more than 
a few hours. 

Fig. 3. The training curve of two RL agents on a selected day when trained for 

300,000 steps on each of the two metrics 
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B. Minimizing Average Job Wait Time 

Each of the 20 models trained to minimize average job wait 
time was used to schedule 23 days of jobs, and the performance 
of the model was compared to the algorithmic baselines of 
FCFS, Oracle SJF, SJF, and BFBP.  Conducting ANOVA on the 
results showed there was a statistically significant difference 
between the average job wait times for the different scheduling 
algorithms (p-value =1.395 ∗ 10−15).  Doing pairwise t-tests 
comparing the different scheduling methods to the model 
showed significance between the model and Oracle, BFBP, and 
FCFS.  When using the metric of minimizing average job wait 
time, both SJF and Oracle scheduling performed better than the 
model.  This is unsurprising as these scheduling algorithms are 
designed to minimize this metric.  The model was able to 
schedule jobs such that the average job wait time was 18.44% 
lower than if they were scheduled using the BFBP algorithm. 
TABLE I. shows the mean average job wait time when 
scheduling all 23 days using the various scheduling techniques 
with statistically significant paired t-test p-values highlighted.  A 
boxplot of the average job queue time can be found in Fig. 4. 

TABLE I.  RESULTS FOR MINIMIZING AVERAGE JOB WAIT TIME 

Fig. 4. Boxplot of average job wait times for the different scheudling 

techniques (lower is better). 

C.  Maximizing HPC System Utilization 

Next, each of the 20 models trained to maximize HPC 
system utilization was used to schedule 23 days of jobs, and the 
performance of the model was compared to the same algorithmic 
baselines.  Conducting ANOVA on the results showed there was 
a significant difference between the HPC system utilization for 
the different scheduling algorithms (p-value = 2.2 ∗ 10−16 ).  
Doing pairwise t-test  comparisons between the different 
scheduling methods showed significance between the 
performance of the model and FCFS. In terms of maximizing 
cluster utilization, BFBP did the best with the cluster utilization 

of 45.63% compared to the model’s cluster utilization of 
45.61%.  The BFBP algorithm was designed to maximize this 
metric by maximizing the utilization of each of the machines in 
the cluster, so this is also unsurprising.  Additionally, the 
inconclusive t-test indicates that we cannot reject the null 
hypothesis that the difference in the means of BFBP and the 
model is due to random chance.  We cannot conclude that the 
model does better, but it is at least able to perform comparably 
to the algorithmic baselines when trained to maximize this 
metric.  TABLE II. shows the mean HPC system utilization 
when scheduling all 23 days using the various scheduling 
techniques with statistically significant paired t-tests 
highlighted.  A boxplot of the average HPC system utilization 
can be found in Fig. 5. 

TABLE II.  RESULTS FOR MAXIMIZING HPC SYSTEM UTILIZATION 

Scheduling 

Method 

Cluster Utilization 

Higher is better 

T-test P-value 

vs. the Model 

FCFS 41.26% 2.2 ∗ 10−16 

SJF 44.73% 0.05552 

Oracle SJF 45.18% 0.3567 

RL Model 45.61% n/a 

BFBP 45.63% 0.9671 

Fig. 5. Boxplot of cluster utilization for the different scheudling techniques 

(higher is better). 

D. Interpretation 

The RL agent trained using PPO with invalid action 
masking was able to beat or at least perform comparably to the 
algorithmic scheduling baselines.  The agent’s performance 
when minimizing average job queue time was 18.44% better 
than the performance of BFBP, a scheduling algorithm used to 
power modern scheduling applications.  When maximizing 
HPC system utilization, there was no difference between the 
agent’s performance and that of the algorithmic baselines, 
including BFBP.  Returning to the research questions, it was 
demonstrated that RL can provide a high-quality scheduling 
policy comparable to or better than algorithmic scheduling 
baselines.  Additionally, since the RL agent was trained on 
constructed workloads, and then evaluated using different 
workloads actually submitted to our local HPC system, it was 
able to successfully apply the scheduling policy it learned on 
one workload to another.  Additionally, RL was able to 
accommodate three resource constraints per job (requested 

Scheduling 

Method 

Avg. Job Wait 

Time in Minutes 

(Lower is better) 

T-test P-value vs. 

the Model 

Oracle SJF 308.55 3.156 ∗ 10−10 

SJF 454.05 0.9238 

RL Model 456.79 n/a 

BFBP 549.59 0.003718 

FCFS 2779.20 2.2 ∗ 10−16 
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memory, requested CPUs, and requested GPUs), and 
successfully schedule on par with algorithmic scheduling 
baselines.  Furthermore, the RL agent was able to schedule 
multiple jobs per machine and respect the resource constraints 
on each machine.  The RL agent was able to select not only the 
job from the queue to schedule next, but also the machine on 
which to run it, similar to modern scheduling applications.  
Finally, this RL technique could learn different scheduling 
policies, one which was minimized average job queue time and 
one which was maximized HPC system utilization, showing its 
flexibility and applicability to the needs of different HPC 
system administrators. 

V. CHALLENGES AND FUTURE WORK 

Curiously, increasing the queue depth available to the RL 
agent beyond a certain point did not improve training 
convergence or the agent’s performance.  Queue depths of 10, 
60, 100, 200, and 500 were investigated, and degradation of 
training value began when queue depth was greater than 100.  
One would think that being able to look deeper in the queue 
would allow for better scheduling performance.  It is thought 
that size of the observation space was causing difficulty with the 
SB3 implementation of PPO with invalid action masking.  The 
size of the observation space for our implementation was as 
follows: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑒 = 𝑞𝑢𝑒𝑢𝑒 𝑑𝑒𝑝𝑡ℎ ∗ 𝑛𝑢𝑚 𝐻𝑃𝐶 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 

As the queue depth, or the number of HPC machines 
increased, so did the size of the observation space.  Beyond a 
certain point queue depth of HPC size, the sum of the 
probabilities of actions exceeded a threshold set in SB3.  This 
challenge might be overcome with another implementation of 
PPO with invalid action masking, but it bears further 
investigation. 

To build the observation space also requires maintaining a 
list of schedulable jobs.  This requires iterating through each 
machine in the cluster for every job in the job queue to see if 
any machine currently has adequate resources to schedule a 
particular job.  This operation has O(n*m) time complexity, 
where n was the queue depth and m was the number of 
machines in the cluster, significantly slowed down the speed of 
scheduling using RL.  This operation could be sped up 
significantly if the RL agent were first trained to choose only 
schedulable jobs from the queue and then given the task to 
choose a schedulable job from the queue and machine on 
which to run it.  Scheduling using BFBP requires the same 
O(n*m) operations to make its decisions, but with further 
algorithmic refinement, scheduling using RL could not only 
perform comparably to scheduling with algorithmic baselines 
in terms of HPC metrics, but it also would be faster and more 
performant.  The speed of making scheduling decisions was 
outside the scope of what was investigated with this research, 
but it’s likely that with some algorithmic optimizations, 
scheduling with RL could be faster than these algorithmic 
baselines as well. 

Some scheduling applications, like Slurm, allow for custom 
user-provided plugins for scheduling.  It would be of great 
interest to explore how a RL powered scheduling plugin for 

Slurm would perform on an actual or simulated HPC system.  
Much integration work would be required, but we believe this 
work demonstrates the viability of HPC scheduling with RL 
and moves it one step closer to an actual implementation on an 
HPC system. 

VI. CONCLUSIONS  

This work showed PPO with invalid action masking can 
perform better than or comparable to algorithmic scheduling 
baselines when scheduling for HPC systems.  The RL agent 
was able to select not only the next job from the job queue, but 
also the machine on which to run it all while accommodating 
multiple resource constraints on each machine.  Also, within 
the discrete event simulator, multiple jobs could execute 
simultaneously on any machine in the simulated cluster while 
still respecting the machine’s resource constraints. The code 
used to conduct this research has been released under the GPL 
v3.0 license should others find it useful. 
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