
 Tiako P.F. (ed) Competitive Tools, Techniques, and Methods. Chronicle of Computing. OkIP. APDC24#6

 © 2024 Oklahoma International Publishing https://doi.org/10.55432/978-1-6692-0007-9_1

1 Presented at the 2024 OkIP International Conference

 on Advances in Parallel and Distributed Computing (APDC)

in Oklahoma City, OK, USA, and Online, on April 3, 2024

Scheduling for high performance computing with reinforcement learning

Scott Hutchisona*, Daniel Andresena, William Hsua, Benjamin Parsonsb, Mitchell Neilsena

aKansas State University, 110 Anderson Hall, 919 Mid-Campus Drive, Manhattan, KS 66506
bEngineering and Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180

ABSTRACT

Job scheduling for high performance computing systems involves

building a policy to optimize for a particular metric, such as

minimizing job wait time or maximizing system utilization. Different

administrators may value one metric over another, and the desired

policy may change over time. Tuning a scheduling application to

optimize for a particular metric is challenging, time consuming, and

error prone. However, reinforcement learning can quickly learn

different scheduling policies dynamically from log data and effectively

apply those policies to other workloads. This research demonstrates

that a reinforcement learning agent trained using the proximal policy

optimization algorithm performs 18.44% better than algorithmic

scheduling baselines for one metric and has comparable performance

for another. Reinforcement learning can learn scheduling policies

which optimize for multiple different metrics and can select not only

which job in the queue to schedule next, but also the machine on which

to run it. The agent considers jobs with three resource constraints

(CPU, GPU, and memory) while respecting individual machine

resource constraints.

Keywords: High Performance Computing, Scheduling,

Reinforcement Learning.

I. INTRODUCTION

Scheduling for High Performance Computing (HPC)
systems is typically done using a batch scheduler. In most HPC
systems, users will submit their jobs to a centralized job
scheduler that will reserve and assign HPC resources according
to the resources requested by the users at submission time.
Typically, the system administrators managing the HPC system
will configure the scheduler using an optimization goal, or
metric, such as maximizing HPC resource utilization,
minimizing job wait time, maximizing job throughput, etc. The
optimization goal of system administrators may change from
one time period to the next, and different HPC administrators
may value one metric over another. Correctly configuring the
batch scheduler to optimize for different metrics is challenging,
and optimizing for one metric may adversely affect another.
This research shows that reinforcement learning can learn
different scheduling policies to optimize for different goals
while remaining competitive with or performing better than
algorithmic scheduling baselines.

Although batch scheduling has been shown to be an NP-
Hard problem (Ullman, 1975), some job schedulers compute job
priorities based on attributes of the submitted job. Examples of
algorithmic scheduling based on job attributes include First
Come First Serve (FCFS), Shortest Job First (SJF), Oracle SJF,

and Best Fit Bin Packing (BFBP). More details of these
algorithms are provided in Section II.A. More sophisticated
schedulers use advanced techniques such as utility functions or
machine learning to make their scheduling decisions. Recently,
researchers have looked to Reinforcement learning (RL), one of
the machine learning paradigms, to learn scheduling policies for
HPC scheduling applications. With RL, we allow a machine
learning agent to make scheduling decisions and provide
feedback on its performance using a reward. When trained
iteratively, the agent can learn a scheduling policy to maximize
the reward it receives. When this reward is tied to the desired
scheduling optimization goal, the RL agent makes scheduling
decisions to optimize for the chosen goal. The questions this
research set out to answer are as follows:

• Can RL provide a high-quality scheduling policy
comparable to or better than algorithmic scheduling
baselines?

• Is the learned policy only effective on the workload
used for training, or can it generalize and remain
effective on other previously unseen workloads?

The remainder of this paper is structured as follows: Section
II provides details about the background and related works, as
well as further details of the implementation of this work.
Section III discusses the methodology and a comparison of the
performance of a RL scheduling agent with algorithmic
scheduling baselines. Section IV discusses the results of the
experiment, the statistical analysis done, and the conclusions
reached. Section V expands upon the challenges encountered in
the work, as well as prospects for future work. Finally, section
VI offers final concluding remarks.

II. BACKGROUND AND RELATED WORKS

A. Algorithmic Scheduling Baselines

 The baseline scheduling algorithms to which the RL agent’s
performance will be compared are First Come First Serve
(FCFS), Shortest Job First (SJF), Oracle SJF, and the Best Fit
Bin Packing (BFBP) Algorithm. For FCFS, jobs are scheduled
strictly in the order in which they arrive. If no machine in the
HPC cluster has sufficient resources to execute the first
chronological job in the queue, the scheduler waits until there
are adequate resources to begin the execution of the first job in
the queue. SJF will sort the job queue by requested job run time
and begin running the shortest job that some machine in the
cluster has adequate resources to execute. In practice, users of
the HPC system tend to overestimate the amount of time and

* Corresponding author E-mail: scotthutch@ksu.edu

2

resources their jobs require, as they do not want their job’s
execution to be halted by exceeding their requested resources.
Overestimation of resources by the users, including requested
job time, tends to degrade the performance of scheduling
algorithms like SJF. Oracle SJF behaves like SJF except it sorts
the job queue by actual run time instead of requested run time.
This information cannot be known by the scheduler at job
submission time when the scheduler is making its decisions, and
scheduling using this information provides a decent lower bound
for the average job waiting time. BFBP is perhaps the most
relevant scheduling algorithm as it powers some scheduling
applications in use on actual HPC systems today, like Slurm
(Jette & Grondona, 2003). BFBP considers all jobs in the queue
and the available resources for each machine in the cluster.
BFBP selects the (job, machine) pair that will result in the fewest
resources remaining for some machine in the cluster and begins
executing that job on the chosen machine. This has been shown
to take no more than ⌊1.7 ∗ 𝑂𝑃𝑇⌋ machines (Dósa & Sgall,
2014), where OPT is the minimum number of machines required
for a particular workload. Not only does this scheduling
algorithm power some modern scheduling applications, but it
also serves to provide a decent upper bound for the HPC cluster
utilization metric for any particular workload.

B. Reinforcement Learning for Policy Optimization

 In general, a RL agent is attempting to choose the best action
to maximize its reward given the current state of the
environment. The agent has knowledge of the environment
through its observation space, and it sees the environment in
state S at time t. The agent has certain actions available to it
through its action space. The agent chooses action A at time t.
This action will change the environment to a new state S at time
t+1. The agent then receives some reward R at time t+1 for its
action. Based on the reward, the weights for the neural network
powering the agent’s decision-making process are updated and
the process repeats until the reward converges to a maximum.
The policy the agent learns over time will maximize the
expected reward for a particular action given the current state of
the observation space. The general framework for RL is shown
in Fig. 1.

Fig. 1. The general framework for reinforcment learning

 In the context of using RL to schedule for HPC systems, the
observation space consists of the jobs in the job queue and the
resources available on each machine. The actions available to
the agent are selecting a particular job from the job queue and a
machine from the cluster on which to run it. When the reward
is tied to the optimization goal (job wait time or HPC
utilization), the agent will learn to select the best job from the
job queue and the machine on which to run it that will optimize
for the desired metric. Metrics may be maximized (as with HPC
system utilization) or minimized (as with job wait time). It was

the goal of this research to ascertain if RL could learn multiple
scheduling policies to optimize for different metrics, and if those
policies could compete with algorithmic scheduling baselines on
new, never-before-seen workloads. Additional details about the
implementation used for this research can be found in Section
II.E.

 Proximal Policy Optimization (PPO) (Schulman, Wolski,
Dhariwal, Radford, & Klimov, 2017) is an RL technique
developed to improve upon and address some shortcomings in
previous RL techniques. PPO is an on-policy technique,
meaning that each update of the policy only uses data collected
while acting according to the most recent version of the policy.
The policy maps the states in the environment to actions taken
when in those states. Generally, an objective function in RL
returns the expected reward for an action in a given state. Rather
than using gradient ascent on the objective function to optimize
the policy (a computationally expensive process), PPO employs
a surrogate objective function which gives a conservative
estimate for how much the objective function will change as a
result of a policy update. Large policy updates are penalized via
clipping, resulting in quick training convergence and good
performance for many tasks.

C. HPC Scheduling Using Machine Learning

Scheduling for HPC systems using RL techniques has been
a topic of much research interest recently. One of the first
attempts to do HPC scheduling with RL was accomplished with
DeepRM (Mao, Alizadeh, Menache, & Kandula, 2016). Mao et
al. showed that RL can learn multiple scheduling policies to
compete with state-of-the-art heuristics when scheduling HPC
jobs. Their RL agent uses gradient decent on policy parameters
to maximize the expected cumulative discounted reward. It was
shown to adapt to different conditions, converge quickly, and
learn sensible scheduling strategies.

 RLSchert (Wang, et al., 2021) was a more recent
project using RL to perform HPC scheduling. This project
included a remaining time predictor to better estimate how long
a job will take in order to make better scheduling decisions.
RLSchert incorporated requested memory and requested CPUs
as resource constraints and learns a policy to select or kill jobs
according to their status and estimated remaining time using the
PPO technique.

Another RL HPC scheduler is A2cScheduler (Liang, Yang,
Jin, & Chen, 2020). This technique uses the actor-critic deep-
RL technique to perform scheduling and resource management
for HPC systems. A2cScheduler also considers two job
resources constraints, requested memory and requested CPUs.

The research most closely related this work is RLScheduler
(Zhang, Dai, He, Bao, & Xie, 2020). Zhang et al. showed the
viability of using RL and PPO to learn multiple scheduling
policies for both real and constructed HPC workloads.
However, the neural network powering RLScheduler only
selects the next job to be started from the job queue. The
machine on which the job is run is not selected by the agent, and
the job is handed off to the cluster for execution on some
machine. Also, each machine in the cluster is limited to running
only one job at a time, which is a technique employed by some
HPC systems. However, many HPC systems allow the

3

allocation of multiple jobs to a single HPC node as resources
allow, resulting in increased job throughput and higher HPC
utilization. Additionally, RLScheduler only considers two
resource constraints for each job, the job’s requested memory
and number of requested CPUs. It was the goal of this research
to build upon what was accomplished with RLScheduler by
including the following:

• Increase the number of constraints each job can
request from two to three by allowing jobs to
request memory, CPUs, and GPUs.

• Allow multiple jobs to execute on a single HPC
machine while still respecting the machine’s total
resource constraints.

• Allow the RL agent to select not only a job from
the queue, but also the machine in the cluster on
which to run it.

Accomplishing these should bring HPC scheduling with RL
one step closer to implementation on an actual HPC system.

D. Workload Specification with Three Resource Constratints

The jobs given to the scheduler to be scheduled comprise the
workload. There are numerous HPC workloads available for
use, and we have access to the log data of a local university HPC
system to construct workloads for our use. A trend with HPC
scheduling research thus far seems to be the consideration of
only two resource constraints per job: the amount of requested
memory and the number of requested CPUs. We believe this
stems from a limitation of the Standard Workload Format
(SWF) (Chapin, et al., 1999) method of specifying workloads
for HPC systems. The SWF has become the de facto standard
for HPC scheduling research and is used extensively in this
space. Although the resource constraints included in the SWF
are certainly important, analysis of our local HPC system has
shown that jobs requesting GPU resources have become
increasingly prevalent. This trend will likely continue as future
AI researchers and others capitalize on GPUs and other
hardware accelerators. In fact, on our HPC system, we have
frequently observed low GPU availability being a key factor in
extending job wait time. Alternatives to the SWF have been
proposed, such as the Modular Workload Format (MWF)
(Corbalan & D’Amico, 2021). The MWF incorporates not only
non-classical computing resources (like GPUs), but also
additional new job profiles as well. For this reason,
consideration of a third resource constraint, requested GPUs,
was seen as important for this work, as it is often overlooked in
prior HPC scheduling research. Workloads were specified using
a simple comma separated value (CSV) format, which included
the following information about each job: JobName,
RequestedMemory, RequestedCPUs, RequestedGPUs,
RequestedDuration, ActualDuration, and SubmitTime. The
characteristics of the machines comprising the simulated HPC
cluster were specified using another CSV file with the following
attributes: MachineName, TotalMemory, TotalCPUs, and
TotalGPUs.

E. OpenAI Gym Environment

OpenAI Gym (Brockman, et al., 2016) is an open-source
Python library and Application Programming Interface (API)

for developing and comparing RL algorithms. OpenAI Gym
specifies methods for implementing a custom environment to
explore machine learning tasks. Within the custom
environment, the observation space, action space, step function,
and various others are defined. The RL agent’s neural network
provides a mapping from the observation space to the action
space and allows the agent to maximize the expected return for
its available actions. Invalid action masking (Huang & Ontañón,
2020) eliminates any impossible or clearly unproductive actions.
In the context of our HPC Scheduling problem, invalid action
masking removes any (job, machine) actions for which the
machine does not have adequate available resources to run the
job. Invalid action masking reduces the number of possible
actions the agent must consider and has been shown to improve
convergence time during training, as the agent will not attempt
to schedule a job on a machine that cannot run it. If the agent
were to choose an invalid action, the state of the observation
space would not change, and the workload would not move any
closer towards completion. Stable Baselines3 (SB3) (Raffin, et
al., 2021) is a Python library that provides a set of reliable
implementations of RL algorithms, and this research
implemented a custom OpenAI Gym environment using a self-
implemented discrete event simulator (DES) representing the
HPC scheduling problem. The SB3 PPO with invalid action
masking algorithm was used to train a RL agent, and then its
performance was compared to algorithmic scheduling
algorithms implemented in the DES. The DES keeps track of
the current simulation time step and maintains lists for future
jobs, queued jobs, running jobs, and completed jobs. As the
simulation progresses and simulation time advances, jobs move
through the lists in the DES, machines track their currently
available resources. Upon simulation termination, the desired
metrics can be calculated and compared to one another
depending on the algorithm used to schedule the jobs to the
simulated HPC.

 The custom OpenAI Gym environment provides the
definitions of the observation space and the action space. The
observation space consisted of the first n schedulable jobs in the
job queue. A job was considered schedulable if at least one
machine in the cluster had adequate resources to schedule it.
Many scheduling applications limit a maximum queue depth to
search for jobs to schedule, and the code for this research was
written to allow adjustment of the queue depth easily. The
action space selects an individual schedulable job from the job
queue and a machine on which to run it. This structure is
depicted in Fig. 2. This was initially implemented as a multi-
discrete action space, however, many scheduling algorithms
require a discrete action space. This 2D action space was
converted to a 1D action space similar to converting a 2D array
into a 1D array using the following formula:

1D_action = (machine_index * num_machines) + job_index

Fig. 2. The observation space and action space of the custom OpenAI Gym

environment

4

 The reward returned at each training step is tied to the
desired policy. As implemented, the SB3 algorithm will
maximize this episodic reward, so when minimizing job queue
time, the reward per step was reward = 0 - avg. job wait time.
When maximizing system utilization, reward = HPC System
utilization. An episode consists of scheduling every job in a
workload, and the cumulative reward across the entire episode
is used to update the RL agent’s learned scheduling policy.

III. METHODOLOGY

To evaluate the efficacy and the performance of using PPO
with invalid action masking when scheduling jobs for HPC
systems, the follow steps were taken:

• Construct 20 sets of jobs consisting of high
utilization jobs (jobs requesting more than 20
CPUs) and modify the job’s submission times to be
the same. Add 2% of jobs requesting any number
of GPU resources to the set.

• For each set of constructed jobs, train an agent
using PPO with invalid action masking to minimize
job wait time and another agent to maximize
system utilization.

• Select 23 days’ worth of jobs from HPC log data of
days with approximately the same number of
submitted jobs (1000 +/- 100 jobs).

• Schedule these 23 days using the algorithmic
baselines.

• Use the trained agent to schedule these 23 days and
compare its performance to the algorithmic
scheduling baselines.

• Conduct analysis of variance (ANOVA) to
determine if the differences of the means of the
scheduling methods is statistically significant.

• For agents trained to minimize average job wait
time, conduct pairwise t-tests between the agent’s
performance and the algorithmic baseline’s
average job wait time for the 23 days.

• For agents trained to maximize HPC system
utilization, conduct pairwise t-tests between the
agent’s performance and the algorithmic baseline’s
average HPC system utilization for the 23 days.

A. Training Workload Construction

To construct the training workload, jobs from log data for
the local HPC systems were sampled. Zhang et al. noted that the
workload trajectory was important for productive training, and
they utilized trajectory filtering to select only job traces that
were productive for training their RL agent. Various training
workloads from local HPC log data were tested for training, and
the most productive and consistent training came from selecting
“large jobs” that requested more than 20 CPUs. Training
workloads were constructed by randomly selecting 2000 jobs
requesting more than 20 CPUs from HPC log data, and
randomly adding 40 jobs requesting any number of GPUs. This
2% addition of jobs requesting GPUs aligns with the historic
level of such jobs from our HPC system. Then the jobs were

shuffled, and modifying the submission time for all jobs such
that they were submitted simultaneously. Essentially, we
wanted challenging workloads for the scheduler, which would
reward good scheduling decisions and punish poor ones. Each
of the 20 workloads constructed was used to train a RL agent
using two metrics: minimizing the average job wait time and
maximizing HPC system utilization.

B. Evaluation on Actual Workloads

Again, log data was used to find days which had roughly the
same number of submitted jobs. We sought days with enough
jobs that scheduling would be a non-trivial activity for our
simulated cluster of nine machines. Searching log data for days
with 1000 +/- 100 submitted jobs yielded 23 different days from
the log data considered. The resources requested, the
submission time, and the actual run time for these jobs remained
unchanged from the log data, and the 40 different agents were
used to schedule the 23 days using the metric on which they were
trained. The algorithmic baselines also scheduled the 23 days to
provide a basis for comparison of the performance of the RL
agent’s scheduling.

C. Statistical Analysis

ANOVA (Girden, 1992) was utilized to determine if there
was a statistically significant difference between the means of
the models and the algorithmic scheduling baselines. Next,
pairwise t-tests (Student, 1908) were conducted between each
algorithmic scheduling baseline and the model to determine if
difference between the means of the models and the algorithmic
baseline was statistically significant. A significance level of
95% (∝= 0.05) was used for all statistical tests.

IV. RESULTS

A. Training Convergence

Figure Fig. 3 shows the training curves for two agents trained
on one set of constructed jobs. One agent was trained to
minimize average job queue time, and the other was trained to
maximize HPC system utilization. The training for the depicted
day converges quickly to some maximal value, indicating that
the agent has learned how to optimally schedule a chosen day
for its given metric. Training was accomplished using HPC
resources in parallel, and training each agent took no more than
a few hours.

Fig. 3. The training curve of two RL agents on a selected day when trained for

300,000 steps on each of the two metrics

5

B. Minimizing Average Job Wait Time

Each of the 20 models trained to minimize average job wait
time was used to schedule 23 days of jobs, and the performance
of the model was compared to the algorithmic baselines of
FCFS, Oracle SJF, SJF, and BFBP. Conducting ANOVA on the
results showed there was a statistically significant difference
between the average job wait times for the different scheduling
algorithms (p-value =1.395 ∗ 10−15). Doing pairwise t-tests
comparing the different scheduling methods to the model
showed significance between the model and Oracle, BFBP, and
FCFS. When using the metric of minimizing average job wait
time, both SJF and Oracle scheduling performed better than the
model. This is unsurprising as these scheduling algorithms are
designed to minimize this metric. The model was able to
schedule jobs such that the average job wait time was 18.44%
lower than if they were scheduled using the BFBP algorithm.
TABLE I. shows the mean average job wait time when
scheduling all 23 days using the various scheduling techniques
with statistically significant paired t-test p-values highlighted. A
boxplot of the average job queue time can be found in Fig. 4.

TABLE I. RESULTS FOR MINIMIZING AVERAGE JOB WAIT TIME

Fig. 4. Boxplot of average job wait times for the different scheudling

techniques (lower is better).

C. Maximizing HPC System Utilization

Next, each of the 20 models trained to maximize HPC
system utilization was used to schedule 23 days of jobs, and the
performance of the model was compared to the same algorithmic
baselines. Conducting ANOVA on the results showed there was
a significant difference between the HPC system utilization for
the different scheduling algorithms (p-value = 2.2 ∗ 10−16).
Doing pairwise t-test comparisons between the different
scheduling methods showed significance between the
performance of the model and FCFS. In terms of maximizing
cluster utilization, BFBP did the best with the cluster utilization

of 45.63% compared to the model’s cluster utilization of
45.61%. The BFBP algorithm was designed to maximize this
metric by maximizing the utilization of each of the machines in
the cluster, so this is also unsurprising. Additionally, the
inconclusive t-test indicates that we cannot reject the null
hypothesis that the difference in the means of BFBP and the
model is due to random chance. We cannot conclude that the
model does better, but it is at least able to perform comparably
to the algorithmic baselines when trained to maximize this
metric. TABLE II. shows the mean HPC system utilization
when scheduling all 23 days using the various scheduling
techniques with statistically significant paired t-tests
highlighted. A boxplot of the average HPC system utilization
can be found in Fig. 5.

TABLE II. RESULTS FOR MAXIMIZING HPC SYSTEM UTILIZATION

Scheduling

Method

Cluster Utilization

Higher is better

T-test P-value

vs. the Model

FCFS 41.26% 2.2 ∗ 10−16

SJF 44.73% 0.05552

Oracle SJF 45.18% 0.3567

RL Model 45.61% n/a

BFBP 45.63% 0.9671

Fig. 5. Boxplot of cluster utilization for the different scheudling techniques

(higher is better).

D. Interpretation

The RL agent trained using PPO with invalid action
masking was able to beat or at least perform comparably to the
algorithmic scheduling baselines. The agent’s performance
when minimizing average job queue time was 18.44% better
than the performance of BFBP, a scheduling algorithm used to
power modern scheduling applications. When maximizing
HPC system utilization, there was no difference between the
agent’s performance and that of the algorithmic baselines,
including BFBP. Returning to the research questions, it was
demonstrated that RL can provide a high-quality scheduling
policy comparable to or better than algorithmic scheduling
baselines. Additionally, since the RL agent was trained on
constructed workloads, and then evaluated using different
workloads actually submitted to our local HPC system, it was
able to successfully apply the scheduling policy it learned on
one workload to another. Additionally, RL was able to
accommodate three resource constraints per job (requested

Scheduling

Method

Avg. Job Wait

Time in Minutes

(Lower is better)

T-test P-value vs.

the Model

Oracle SJF 308.55 3.156 ∗ 10−10

SJF 454.05 0.9238

RL Model 456.79 n/a

BFBP 549.59 0.003718

FCFS 2779.20 2.2 ∗ 10−16

6

memory, requested CPUs, and requested GPUs), and
successfully schedule on par with algorithmic scheduling
baselines. Furthermore, the RL agent was able to schedule
multiple jobs per machine and respect the resource constraints
on each machine. The RL agent was able to select not only the
job from the queue to schedule next, but also the machine on
which to run it, similar to modern scheduling applications.
Finally, this RL technique could learn different scheduling
policies, one which was minimized average job queue time and
one which was maximized HPC system utilization, showing its
flexibility and applicability to the needs of different HPC
system administrators.

V. CHALLENGES AND FUTURE WORK

Curiously, increasing the queue depth available to the RL
agent beyond a certain point did not improve training
convergence or the agent’s performance. Queue depths of 10,
60, 100, 200, and 500 were investigated, and degradation of
training value began when queue depth was greater than 100.
One would think that being able to look deeper in the queue
would allow for better scheduling performance. It is thought
that size of the observation space was causing difficulty with the
SB3 implementation of PPO with invalid action masking. The
size of the observation space for our implementation was as
follows:

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑒 = 𝑞𝑢𝑒𝑢𝑒 𝑑𝑒𝑝𝑡ℎ ∗ 𝑛𝑢𝑚 𝐻𝑃𝐶 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

As the queue depth, or the number of HPC machines
increased, so did the size of the observation space. Beyond a
certain point queue depth of HPC size, the sum of the
probabilities of actions exceeded a threshold set in SB3. This
challenge might be overcome with another implementation of
PPO with invalid action masking, but it bears further
investigation.

To build the observation space also requires maintaining a
list of schedulable jobs. This requires iterating through each
machine in the cluster for every job in the job queue to see if
any machine currently has adequate resources to schedule a
particular job. This operation has O(n*m) time complexity,
where n was the queue depth and m was the number of
machines in the cluster, significantly slowed down the speed of
scheduling using RL. This operation could be sped up
significantly if the RL agent were first trained to choose only
schedulable jobs from the queue and then given the task to
choose a schedulable job from the queue and machine on
which to run it. Scheduling using BFBP requires the same
O(n*m) operations to make its decisions, but with further
algorithmic refinement, scheduling using RL could not only
perform comparably to scheduling with algorithmic baselines
in terms of HPC metrics, but it also would be faster and more
performant. The speed of making scheduling decisions was
outside the scope of what was investigated with this research,
but it’s likely that with some algorithmic optimizations,
scheduling with RL could be faster than these algorithmic
baselines as well.

Some scheduling applications, like Slurm, allow for custom
user-provided plugins for scheduling. It would be of great
interest to explore how a RL powered scheduling plugin for

Slurm would perform on an actual or simulated HPC system.
Much integration work would be required, but we believe this
work demonstrates the viability of HPC scheduling with RL
and moves it one step closer to an actual implementation on an
HPC system.

VI. CONCLUSIONS

This work showed PPO with invalid action masking can
perform better than or comparable to algorithmic scheduling
baselines when scheduling for HPC systems. The RL agent
was able to select not only the next job from the job queue, but
also the machine on which to run it all while accommodating
multiple resource constraints on each machine. Also, within
the discrete event simulator, multiple jobs could execute
simultaneously on any machine in the simulated cluster while
still respecting the machine’s resource constraints. The code
used to conduct this research has been released under the GPL
v3.0 license should others find it useful.

REFERENCES

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,

& Zaremba, W. (2016). OpenAI Gym. ArXiv Preprint ArXiv:1606.01540.
Chapin, S., Cirne, W., Feitelson, D., Jones, J., Leutenegger, S., Schwiegelshohn,

U., . . . Talby, D. (1999). Benchmarks and standards for the evaluation of
parallel job schedulers. Job Scheduling Strategies for Parallel Processing:

IPPS/SPDP’99Workshop, JSSPP’99 (pp. 67-90). San Juan: Springer

Berlin Heidelberg.
Corbalan, J., & D’Amico, M. (2021). Modular workload format: Extending

SWF for modular systems. Workshop on Job Scheduling Strategies for

Parallel Processing (pp. 43-55). Cham: Springer International Publishing.
Dósa, G., & Sgall, J. (2014). Optimal analysis of best fit bin packing.

International Colloquium on Automata, Languages, and Programming

(pp. 429-441). Berlin: Heidelberg: Springer Berlin Heidelberg.
Girden, E. R. (1992). ANOVA: Repeated measures (No. 84). Sage.

Huang, S., & Ontañón, S. (2020). A closer look at invalid action masking in

policy gradient algorithms. arXiv preprint arXiv:2006.14171.

Jette, M., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource

Management. Proceedings of ClusterWorld Conference and Expo. . San

Jose, California.
Liang, S., Yang, Z., Jin, F., & Chen, Y. (2020). Data centers job scheduling with

deep reinforcement learning. Advances in Knowledge Discovery and

Data Mining: 24th Pacific-Asia Conference, PAKDD 2020 (pp. 906-917).
Singapore: Springer International Publishing.

Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource

management with deep reinforcement learning. Proceedings of the 15th
ACM workshop on hot topics in networks, (pp. 50-56).

Raffin, A., Hill, A., Gleave, A., A., K., Ernestus, M., & Dormann, N. (2021).

Stable-Baselines3: Reliable Reinforcement Learning Implementations.
Journal of Machine Learning Research, 22, pp. 1-8. Retrieved from

http://jmlr.org/papers/v22/20-1364.html

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.0634.

Student. (1908). The probable error of a mean. Biometrika, (pp. 1-25).
Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer

and System sciences, 384-393.

Wang, Q., Zhang, H., Qu, C., Shen, Y., Liu, X., & Li, J. (2021). RLSchert: an
hpc job scheduler using deep reinforcement learning and remaining time

prediction. Applied Sciences, (p. 9448).

Zhang, D., Dai, D., He, Y., Bao, F. S., & Xie, B. (2020). RLScheduler: an
automated HPC batch job scheduler using reinforcement learning. SC20:

International Conference for High Performance Computing, Networking,

Storage and Analysis (pp. 1-15). IEEE.

