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ABSTRACT 

Citizens in large cities utilize public transportation as an 
alternative to self-driving for several reasons, such as avoiding 
traffic congestion and parking costs and utilizing their time for 
other things (e.g. reading a book or responding to emails). While 
large cities provide public transportation as a service to their 
citizens, they need to consider optimizing their budget and 
ensuring that public transportation is available and reliable. 
Using our case study, the public bus transit system in the city of 
San Antonio, Texas, in this paper, we used predictive analytics 
models to evaluate the performance of public bus 
transportation. We used time point stops as the target variable 
in order to evaluate their impact on the overall performance of 
the system. We also evaluated methods for the detection of 
potential bus-time savings and reported several examples of 
possible savings. 
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I. INTRODUCTION  

Public transportation generates a large amount of data that 
can be continuously analyzed to better improve public 
transportation services. General Transit Feed Specification 
(GTFS) provides a standard protocol to effectively transmit real-
time transit information. The data that is described in GTFS 
feeds is not sensitive or proprietary as it is information about 
public services. As GTFS data is public, this allows many users 
and researchers to develop tools and applications to utilize this 
data. 

One of the most commonly emphasized criteria in public 
transportation is travel time reliability. This can be quantified 
through several metrics, such as expected waiting time, variance 
of travel time, or on-time performance (Danaher et al., 2020). 
Nevertheless, when it comes to determining the most optimal 
routes in public transportation, simply considering travel 
duration is often inadequate. Other factors like the number of 
transfers involved and the expenses incurred can be equally 
significant. 

Transportation networks are usually modelled with graph 
structures for their intuitiveness and ability to utilize many 
software tools. Additionally, algorithms such as Dijkstra’s 
algorithm can work efficiently to solve the single-source 
shortest-paths problem. In public transportation, many 
publications utilized Python libraries (e.g. Partridge, Peartree 
(Butts, 2021) and NetworkX) to convert GTFS feeds into 

directed network graphs. The graph contains two main elements 
(Madamori, Max-Onakpoya, Erhardt, & Baker, 2021): 

• Nodes that represent bus stops. Each node has several 
edges that represent the departure times for all buses 
from that stop. 

• Edges. Each edge represents a bus path from one stop 
to another. The edge weight is the average time it takes 
for a bus to get between the two stops on the edge. 

Bus transportation networks can be modelled as a graph 
where bus stops represent the nodes and connections between 
those stops represent the edges. The edge costs are the costs of 
shortest paths between the respective nodes in the original 
graph. The edge cost is computed as the shortest path cost for 
each departure time from a source node to a destination node 
(Tesfaye, Augsten, Pawlik, Böhlen, & Jensen, 2022). In the 
time-dependent model, all nodes of the graph represent a bus 
stop linked together by one or more routes. A mathematical 
function containing a time variable defines the weight of every 
edge. Each query evaluates the weight according to the time of 
the query. In the time-expanded model, all nodes represent an 
event (arrival, departure or transfer), and thus, it requires more 
nodes and edges (Fortin, Morency, & Trépanier, 2016). In the 
next sub-section, we discuss time points in public transportation 
as designated stops used in schedule management. 

1.1. Time Points 

A time point is a public transit stop that a vehicle tries to 
reach at a scheduled time. A vehicle is not supposed to pass a 
timepoint until the scheduled time has arrived. These stops are 
contrasted with all other stops, besides timepoint stops, on a 
scheduled route for which the transit agency does not explicitly 
schedule an arrival/departure time. Beyond time points, drivers 
can have the flexibility to arrive at other stops and accommodate 
real-time situations related to delays in traffic or any other 
irregular circumstances. Figure 1 shows the variation in the 
number of time points in the different trips. 

* Corresponding author Email: izzat.alsmadi@tamusa.edu 

 



2 

 

 

Fig. 1. Number of timepoints in San Antonio bus trips 

II. RELATED WORK 

A. The General Transit Feed Specification (GTFS)  

The GTFS defines a common format for public 
transportation schedules and associated geographic information. 
GTFS is used as a format to allow public transportation 
authorities to exchange their data in a common format. A typical 
GTFS feed contains a collection of text files that describe static 
public transit schedules and related geodata. 

Delays or uncertainty in traffic occur due to the complexity 
of the system and the real-time or dynamic factors related to 
accidents that can impact and cause issues. Lee and Miller's 
(2020) paper focused on evaluating or measuring accessibility 
to deal with travel time uncertainty. The traffic routing problem 
is formulated as a multi-objective optimization problem with 
time and reliability of the router as the two main objectives. The 
approach is based on a fast, non-dominated sorting algorithm 
(FNSA) that is adapted from Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 
2002).  

In 2008/2009, a local transit agency in Albany, NY, provided 
passenger data, which was used in the research paper (Zhang, 
2014). The authors of the paper analyzed the data based on 
different times and weather conditions. In addition, they 
conducted extensive research on GTFS data and created a 
website that used Google Maps API to retrieve station distance 
and topography data. After testing various algorithms, the 
authors found that the EM algorithm and K-Means were the 
most effective for clustering stations. Although the machine 
learning strategy was able to comprehensively evaluate all stops, 
it was inadequate for analyzing specific routes. Therefore, the 
author used K-Means to create a BRT station selection tool 
which could cluster stops on a particular route. 

B. Timepoints and Schedule Adherence 

Time points are gateways selected to manage scheduling in 
transportation systems. Several research papers discussed 
different scheduling algorithms to optimize timepoint 
scheduling (e.g. (Liu & Miller, 2020; Sun, Samal, White, & 

Dubey, 2017) (Glick, 2020; Sun, Dubey, White, & Gokhale, 
2019)). In terms of scheduling and time points, drivers are 
expected to (Sun et al., 2017): 

• Wait at the time point until the scheduled time if it 
arrives early. 

• Departure as soon as possible if they arrive on time or 
late. 

C. Travel Time Savings 

Arias et al. (2021) looked at creating a bus-only lane in 
Atlanta and how it can result in travel time savings. They went 
through the map of Atlanta to plan out a specific highway to 
have a bus-only lane. Using GTFS, they looked at the bus travel 
time that can be improved. They used stop times to calculate the 
improved time by looking at best-case scenarios versus worst-
case scenarios. 

In (Rothfeld, Fu, Balać, & Antoniou, 2021), authors 
presented an exploratory study in urban air mobility travel time 
saving for several cities, namely, Munich, Paris and San 
Francisco. Arias et al. (2021) used GTFS to evaluate methods 
for travel time-saving potentials. The study used the 2018 
Metropolitan Atlanta Rapid Transit Authority (MARTA) bus 
network. 

D. Public Transit Routing 

The issue of finding optimal routes in public transportation 
systems was examined by researchers. To tackle this problem, a 
popular method involves representing the network as a graph 
and applying a shortest-path algorithm to it (Rothfeld et al., 
2021).  

Delling, Pajor, and Werneck (2015) have presented a new 
approach called RAPTOR, which stands for Round-Based 
Public Transit Optimized Router. This method aims to 
determine the best possible journeys between two specified 
stops while minimizing both the travel time and the number of 
transfers needed. Unlike previous methods that rely on Dijkstra's 
algorithm, RAPTOR functions using a ground-based approach. 
This involves computing arrival times for each round by 
traversing each route, such as a bus line, no more than once. The 
algorithm is based on a dynamic program and utilizes 
uncomplicated data structures, resulting in efficient memory 
usage. 

Jeon, Nam, and Jun (2018) have introduced an enhanced 
version of the RAPTOR algorithm, which accounts for transfer 
resistance and multi-path searching. They have incorporated 
transfer resistance during transfers and assigned distinct values 
based on the type of transit mode used. By examining the 
algorithm's output before and after modification and comparing 
it with the routes taken by passengers in reality, the authors of 
the study have demonstrated that the proposed algorithm 
considers the diverse route selection criteria of passengers. 

III. VIA METROPOLITAN TRANSIT 

In this section, we present a summary of the VIA 
Metropolitan Transit bus public transit system in the city of San 
Antonio, Texas. 
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A. Network Properties 

The following statistics reflect the current status of the San 
Antonio VIA bus transportation system based on public 
information extracted from GTFS: 

• Average riders waiting time in San Antonio VIA is 
reported as 10 minutes (Selcraig, 2020) 

• The overall number of routes is 98. 

• The overall number of stops is 6127. 

• The average number of trips per day is 4795. 

• The number of shapes is 127258. Shapes are associated 
with trips and consist of a sequence of points (i.e., the 
geographic paths) through which the vehicle passes in 
order. 

• The number of edges is 38590. Edges are characterized 
by the straight-line distance between stops. 

• Stop times: 565173: Stop times represent the arrival 
and departure times of a trip at a stop. 

• Timepoint stops: In the dataset, the total number of 
stops for all trips per day is 395588. Of those stops, 
45448 stops are time points. 
 

Additionally, there are several dynamic attributes of VIA 
that are specific to the data that we have collected and used.    

• The total number of evaluated trips in our experiments 
is 123457. 

• The number of transfers: 7314. This number is very 
dynamic and depends on actual trips and whether the 
traveller needs to switch from one bus to another. 

• The number of days in the collected dataset is 140 days 
in 2022. 

• The busiest day is 2022-10-28. 

• The average edge cost, which refers to the business 
time between the two stops in the edge, is 53 seconds.  

• Maximum edge cost is 1231 seconds. 

• Average stop waiting time, outbound: 20 seconds, 
inbound: 20 seconds. 

• Maximum stop waiting time, outbound: 71 seconds, 
inbound: 74 seconds. Those waiting times are for bus 
drivers, not riders. 

• The number of gateways is 34. We used the definition 
and algorithm described in (Madamori et al., 2021) to 
create gateway stops. Gateways are special stops 
selected to act as hubs for other stops to collect and 
store network information. In a smart network, such 
gateways can be used to make real-time decisions to 
optimize network usage and resources. 
 

Figure 2 shows a network graph for San Antonio busses 
network based on edges and nodes described earlier. 

 

Fig. 2. San Antonio VIA Buses Network, all routes 

We created Figure 2 graph object from GTFS data using 
NetworkX graphs. Because the graph object is formatted as an 
instantiated NetworkX graph, we can perform all typical 
network algorithms that are built into NetworkX. For example, 
we generated betweenness centrality. 

Figure 3 shows the longitude and latitude distributions of 
VIA. While there is a fair distribution of stops across several 
latitudes, they are more condensed in a few longitudes that have 
higher volumes of trips. The figure shows in particular that more 
than 35,000 trips are reported in the longitude (-98.45 to -98.55). 

 

Fig. 3. Distributions of latitude and longitude for SA GTFS dataset 

Betweenness centrality provides a measure for the relative 
importance of a node in the bus network on the basis of the 
fraction of shortest paths that go through this node. A high 
betweenness centrality can be an indication that a node is 
essential in connecting different parts of a network. 

Betweenness centrality of a node (or a bus stop in our case) 
v is the sum of the fraction of all-pairs shortest paths that pass 
through v. For around 6000 bus stops in SA, Betweenness 
centrality, minimum, maximum and average values are: 0, 
0.2294, and 0.01163 respectively. In order for one stop to have 
a high betweenness centrality, the node or the bus stop must be 
between many of the other nodes. The difference between 
minimum and maximum shows the large variation in this value 
from one stop to another. Some of the reported betweenness 
centrality in literature for other cities are higher than those of 
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San Antonio. For example, (Akse, 2014) (London Euston 
(0.403)), and (Badie Modiri, 2018) (Katz (0.34)). Other major 
cities, such as Mexico ,City is reported to have lower 
betweenness centrality (Reyna, de la Mota, & Vázquez, 
2021)(0.1448) and 0.04896 in Chapel Hill Transit (Madamori et 
al., 2021). Table 1 shows the top 10 stops in San Antonio in 
terms of betweenness centrality. 

TABLE I.  TOP 10 STOPS IN SAN ANTONIO IN BETWEENNESS CENTRALITY 

StopID BC Value StopID BC Value 

76773  0.2294  99496  0.16999 

71839   0.2136   81726  0.1699 

55229  0.2056  30049  0.1624 

70996  0.2035  71926  0.1606 

70997  0.1706  88986  0.1595 

 

B. Timepoint classification analysis 

While it's not clear how public transportation selects or 
nominate some stops to be time points and whether those time 
points are dynamic or flexible to change, our analysis uses them 
as target label. We collected, created and aggregated several 
features based on GTFS data. Each row represents a stop in a 
trip, and the target column is a binary target, the timepoint, 
whether this stop is a timepoint (1) or not (0). The following 
features are used as input features to the classification model: 

• TripID 

• DepartureTimeRelative: Each stop will have a departure and 

arrival time. In normal scenarios, for time points, those times 

are the same. Hence, one can be used. Additionally, in order to 

process departure time in machine learning models, we 

converted it to a relative real number between 0 and 1. For 

example, 08:00:00 am is converted to 0.3, 12:00:00 as 0.5. 

• HourDeparture: This is a categorized column of the 

departure/arrival time to show only the hour part.  

• StopID 

• Timepoint: This is the target feature, 1 if the stop is a timepoint 

and zero if not. 

• StopSequence: This refers to the stop order in its trip. 

• PickupType: The pickup type field indicates whether 

passengers are picked up at a stop as part of the normal schedule 

or whether a pickup at the stop is not available. This field allows 

the transit agency to indicate that passengers must call the 

agency to arrange a pickup at a particular stop. Out of 565127 

stop records in the dataset, only 10392 are 1, not a pick-up stop. 

• DropOffType: Indicates whether passengers are dropped off 

at a stop as part of the normal schedule or whether a drop off at 

the stop is not available. This field also allows the transit agency 

to indicate that passengers must call to arrange a drop-off at a 

particular stop. The feature is very similar to PickupType and 

so can be eliminated. 

• RouteInt: Routes are defined in the file routes.txt. They are 

made up of one or more trips. A trip occurs at a specific time, 

so the route is time-independent. 

We evaluate several classical algorithms, namely: Logistic 
Regression, KNN, Decision Tree, Random Forest and Gaussian 
NB. We reported, in Table 2, several performance metrics. 

TABLE II.  PERFORMANCE METRICS ON DIFFERENT CLASSIFICATION MODELS 

Classifier  Accuracy  Precision  Recall 

& F1  

Classifier  

LogRegression   0.90 0.0  0.0  0.0 

KNeighbors  0.90  0.0 0.24 0.01 

DecisionTree   0.99  0.99  0.99  0.99 

RandomForest  0.99  0.99  0.99  0.99 

GaussianNB 0.90  0.0  0.0  0.0 

 
Results in Table 2 show two classifiers, Random Forest and 

Decision Trees, performed well in all metrics. However, the rest 
of the classifiers, LR, KNN, and NB, showed very low values in 
precision, recall and F1. This is expected as the dataset is 
imbalanced; in the dataset we used, 65,000 stops that are time 
points, while the rest (500127) are not. In the second experiment, 
we sampled from the dataset equal samples for labels 0 and 1. 
As shown in Table 3, the under-sampling improves precision, 
recall and F1 for KNN and NB but significantly lowered 
accuracy values. 

TABLE III.  PERFORMANCE METRICS ON DIFFERENT CLASSIFICATION MODELS 

AFTER UNDERSAMPLING 

Classifier  Accuracy  Precision  Recall & 
F1  

Classifier  

LogRegression   0.55 0.0  0.0  0.0 

KNeighbors  0.48  0.31  0.40  0.35 

DecisionTree   0.99  0.99  0.99  0.99 

RandomForest  0.99  0.99  0.99  0.99 

GaussianNB 0.55  0.20  0.49  0.28 

 
Features weights with target columns and timepoints (Figure 

4) show that pickup-type, then n_stops are the most important 
features. Although the total number of stops that have pickup-
type =1 is small (10392/565127), and also the number of stops 
that have timepoint value=1 (65000/565127), the correlation is 
shown to be high between both. 

  

Fig. 4. Top Features and Weights 

Figure 5 shows a Decision Tree (DT) based on target class 
timepoint. The root feature is stop-sequence. A stop sequence is 
a unique sequence of stops visited by a transit trip. It first reads 
that all stops that are the first in their trip are timepoint stops. If 
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there is no first stop and there are no pick-up stops, then they 
will not be timepoint stops. Those are the most readable edges 
in the DT. 

 

Fig. 5. Timepoint Decision Tree 

C. Time Savings 

We used GTFS data to analyze the time savings for each 
route. The idea is that if the times change based on traffic, 
smaller wait times during less traffic and higher wait times based 
on heavy traffic, then if we had a dedicated lane for buses, then 
the heavy traffic times would be eliminated and leave the 
minimum wait time at each stop. In order to calculate the benefit, 
we take the average wait time of all stops and subtract the 
minimum time to give us a time savings. By adding all of the 
time savings of each route, we can get an idea of the time benefit 
of having a dedicated lane for that route. For example, to 
calculate the time savings for route 100, we followed the 
following process: 

• First, we calculate the difference between the arrival 
times of each stop and the next one in a trip sequence 
of stops using the equation waitSeconds = 
(firstArrivalTimes - secondArrivalTimes). To do that, 
we used the equation firstArrivalTimes = 
directionTimes.arrivaltime[1:].values to retrieve all 
stops in a trip sequence from the index 1 (inclusive) to 
the end of the sequence (i.e., all stops from the second 
to the last), for example,(26160, 26940, 27960, 28800, 
29760, 30660, 31380, 32340, 33240, 34140,35040, 
35940). We then used the equation 
secondArrivalTime= directiontimes.arrivaltime[:-
1].values to get all stops from the beginning of the trip 
sequence up to, but excluding, the last stop, for 
example, (25320, 26160, 26940, 27960, 28800, 29760, 
30660, 31380, 32340, 33240, 34140, 35040) 

• Second, we calculated the average of all differences 
using the equation average wait = 
np.array(waitseconds).mean() 

• We then computed the "Time savings" by subtracting 
the minimum waiting time from the average wait for 
that trip using the equation Time savings = average 
wait – minimum   

Figure 6 shows there were 12 first and second stops in a trip 
on route 100. Their waiting times range from 720 to 1020 
seconds. The time savings calculated for this trip is 165 seconds. 
That means if all waiting times were 720, there would be a 165-
second benefit compared to the original schedule. 

 

Fig. 6. Time savings for a trip on Route 100 

We appended each iteration of the route to get the list of all 
time savings for each trip. For route 100, there were 107 trips, 
as shown in figure 7. We computed the average time savings for 
all trips to get 135.72 seconds. This was done with a time 
constraint of 700 a.m. to 10 a.m. only.  

 

Fig. 7. Number of trips in route 100 

Table 4 shows the statistics of the time saving for all routes. 
The table provides statistics for time delay and late arrival for a 
set of 78 routes. The statistics are summarized as follows: 

• Number of Routes: There are a total of 78 routes 
included in the analysis. 

• Mean: The mean (average) time delay across all routes 
is approximately 45 minutes and 4.42 seconds. 

• Maximum: The maximum time delay observed among 
the routes is 6 hours, 35 minutes, and 22.97 seconds. 

• Minimum: The minimum time delay observed among 
the routes is 0 hours, 0 minutes, and 0 seconds, 
indicating that some routes arrive exactly on time. 

• Standard Deviation: The standard deviation provides a 
measure of the variability or dispersion of the time 
delays across the routes. The standard deviation value 
is not provided in the given information. 

TABLE IV.  TIME SAVINGS FOR ALL ROUTES 

Num 
of 
routes 

Mean  Max Min Std 

78   0:45:04.42 6:35:22.97 0:00:00 01:37:15 

 

These statistics offer insights into the average, maximum, 
and minimum time delays experienced by passengers across the 
set of 78 routes. It indicates the range of delays observed and 
provides an overview of the distribution of delays. 

Table 5 shows the top routes with the highest average time 
savings (i.e., average late arrival time to the destination stop 
point), along with corresponding trip names. The "Time 
savings" column indicates the average delay in arrival time 
experienced by passengers for each specific route, which could 
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be saved by having a dedicated lane for buses to avoid the traffic 
that causes the delay. The values are presented in hours, minutes, 
and seconds. 

Analyzing this data can help identify routes with the highest 
average delays, allowing for potential improvements in 
scheduling, operational efficiency, and passenger 
communication. 

TABLE V.  TOP ROUTES WITH THE HIGHEST AVERAGE TIME SAVINGS 

Route Trips in Route  Time savings 

42   4432390, 4432363 6:35:22 

515  4433667, 4433654  5:25:06 

25  4430451, 4430507  5:11:11 

2  4429320, 4429319, 4429273  5:09:16 

97  4440015, 4440032, 4440018  4:46:49 

36  4431980, 4431995, 4431979  4:45:50 

9  4439129, 4439074  4:39:52 

88  4438827, 4438781,4438828,4438780  4:21:39 

28  4430989, 4430940, 4430939  3:38:08 

34  4431847,4431804,4431846,4431803  3:33:54 

75  4437746, 4437698, 4437747 2:02:45  

632  4436607, 4436571, 4436564  1:13:52 

 

IV. CONCLUSION AND FUTURE WORK 

Machine learning approaches are proposed to improve 
performance and many aspects of public transportation systems. 
The evaluation of historical and real-time data public 
transportation data can help make better and more informative 
planning and decisions. Timepoint stops are used as a 
scheduling tool to track performance. Using timepoint stops as 
a target column, in this paper, we integrated several input 
features from the different GTFS tables. We reported results 
from several classifiers, while Random Forest and Decision 
Trees showed the overall best results. We also conducted results 
to evaluate approaches to save time in the different bus routes. 
We showed that significant time can be saved while maintaining 
system requirements or constraints. Looking ahead, several 
avenues for future research and development in this field can be 
identified. First, the integration of real-time data streams into the 
predictive models could offer a more dynamic understanding of 
system performance and allow for on-the-fly adjustments. 
Second, incorporating user-centric factors such as passenger 
preferences, peak travel times, and route popularity could 
further enhance the accuracy and applicability of the predictive 
models. 
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