
 Tiako P.F. (ed) Automated Systems, Data, and Sustainable Computing. Chronicle of Computing. OkIP. 

                                  © 2022 Oklahoma International Publishing               https://doi.org/10.55432/978-1-6692-0001-7_4 

15 
 

Adaptive Development of Parallel Power System Dynamic Simulation 

Application in Python 

Cong Wanga*, Liwei Wanga, Shuangshuang Jina 

aClemson University, 1240 Supply St, North Charleston, SC, 29410, USA 

 

ABSTRACT 

Due to its intensive computational demands for real-time 

operation and diagnosis, large-scale power system dynamic 

simulation requires high-performance computing technologies to 

accelerate its computation on advanced computing platforms. In this 

paper, leveraging high-level Python and its parallel scientific 

computing libraries, three parallel power system dynamic simulation 

applications are adaptively developed using native MPI for Python on 

CPU, PETSc for Python on CPU, and CuPy on GPU with dedicated 

data manipulation strategies and implementations, respectively. Their 

computational performance is compared using different sizes of testing 

systems and indicates that: 1) MPI and PETSc can make a decent 

performance for small and moderate-size systems on limited CPU 

resources, and 2) GPU has better potential in speeding up dynamic 

simulation for larger and more complex systems. The results 

demonstrate Python's suitability in parallelizing power system 

modeling and simulation with fast computational performance and 

easy development. 
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I. INTRODUCTION 

Power system dynamic simulation is a critical but compute-
intensive function to monitor system dynamic security margins 
in real-time and keep interconnected power systems operating in 
a security region. The current practice heavily relies on 
commercial software tools. However, most of the commercial 
tools are optimized on a single processor without utilizing high-
performance computing (HPC) techniques. For example, the 
PowerWorld Simulator (PowerWorld Corp, 2012) that is based 
on a sequential package takes over 60 seconds to perform a 20-
second dynamic simulation (Huang, et al., 2017). This time 
difference leaves many uncertainties and security problems for 
the power system balancing and operation as the system 
conditions might change when the solution results are obtained, 
not to mention the challenges of fulfilling the daily demands of 
electricity with the quick expansion of the power system 
topology and upgraded component complexity these days. This 
emergent need drives the research on faster-than-real-time 
dynamic simulation. 

Most of the work that has been done in this area is focused 
on the dynamic simulation functions that are implemented using 
C/C++ types of languages. While they are highly efficient, the 
complexity of code development is relatively high, especially 
for people who do not have strong programming skills. 
Comparing to C/C+, Python is one of the high-level 
programming languages in the computer science domain. It 

provides thousands of object-oriented interfaces and millions of 
function calls, making it easy and safe to program, especially for 
other domain experts such as power engineers. Currently, 
Python-based power system modeling tools are still functionally 
and computationally limited to perform dynamic analysis. For 
example, pandapower (Thurner, et al., 2018), PowerGAMA 
(Svendsen & Spro, 2016), and PYPOWER (pypower, 2015) 
only offer serial programs for dynamic modeling. High-
Performance Computing (HPC) techniques taking advantage of 
advanced shared memory or distributed memory computing 
architecture are ways to go to fit the gap.  

In this paper, three parallel approaches are implemented to 
accelerate power system dynamic simulation. The structure of 
this paper is 1) the workflow and algorithm of power system 
dynamic simulation and the state-of-the-art of parallel 
programming in Python in Section II; 2) two proposed CPU-
based parallel implementations using Message Passing Interface 
(MPI) (The MPI Forum Corp, 1993) and Portable Extensible 
Toolkit for Scientific Computation (PETSc) (Balay, et al., 
2001), and a GPU-based parallel implementation using CuPy 
(Nishino & Loomis, 2017) in Section III to showcase how the 
performance boost can be applied within various Python 
programming environments; and 3) the performance and 
analysis of each implementation and the recommended one 
considering the sizes of the power systems and the constraints 
of the available computing resources in Section IV. Finally, 
Section V concludes the current research outcomes and proposes 
the future work for enhancement. 

II. BACKGROUND 

A. Power System Dynamic Simulation 

Power system dynamic simulation program generally 
consists of nodal admittance matrix (full Y matrix) manipulation 
and multiple time-step simulations. It requires a computationally 
intensive time-domain solution of numerous differential and 
algebraic equations (DAEs) for a short period of time (e.g., 10 
seconds), as shown in Eq. 1, 

{
𝐱̇ = f(𝐱, 𝐮)

𝟎 = g(𝐱, 𝐮)
 (1) 

where the vector x represents dynamic state variables such as 
generator rotor angles and speeds, and the vector u represents 
algebraic variables such as the network bus voltage magnitudes 
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and phase angles, and real and imaginary parts of the bus voltage 
(Jin, Huang, Diao, Wu, & Chen, 2013). 

     Given a power system with N buses, M generators, and Z 
branches, the algebraic equations in Eq. 1 can be represented by 
Eq. 2. 

𝐘𝑁𝑁 ∗ 𝐕𝑁 = 𝐈𝑁 (2) 

To simplify the complexity of the matrix and achieve the best 
matrix operation performance, for a power system with classical 
model and constant impedance load, YNN can be reduced to only 
contain generator internal buses, Y’MM. According to (Jin, 
Huang, Diao, Wu, & Chen, 2017) and (Anderson & Fouad, 
2008), Eq. 3 represents the logic of acquiring reduced nodal 
admittance matrix (reduced Y matrix), 

𝐘′𝑀𝑀 = 𝐘𝑀𝑀 − 𝐘𝑀𝑁 ∗ 𝐘𝑁𝑁
−1 ∗ 𝐘𝑁𝑀 (3) 

where YMM is the matrix storing generators' resistance and 
reactance, YMN is the links between generator internal buses and 
terminal buses, YNN contains constant load impedance and 
generator transient impedance, and YNM is the transpose of YMN. 
Thus, the algebraic equations can be modified to Eq. 4. 

𝐘′𝑀𝑀 ∗ 𝐕
′
𝑀 = 𝐈′𝑀 (4) 

The equations of motion for an individual generator a in the 
complex system could be represented by Eq. 5 for a classical 
generator model. 

{
 

 
𝑑𝑤𝑎
𝑑𝑡

=
𝑤𝑠𝑎
2𝐻𝑎

(𝑃𝑚𝑎 − 𝑃𝑒𝑎 − 𝐷𝑎(𝑤𝑎 − 𝑤𝑠𝑎))

𝑑Ө𝑎
𝑑𝑡

= 𝑤𝑎 −𝑤𝑠𝑎

(5) 

Ha is the inertia constant, wa is the speed, wsa is the synchronous 
speed, Pma and Pea are the mechanical power input and active 

power at the air gap, Da is the damping coefficient, and Өa is the 
angular position of the rotor in the electrical radians with respect 
to synchronously rotating reference (Jin, Huang, Diao, Wu, & 
Chen, 2013). 

To solve the DAEs, the differential equation set in Eq. 1 
needs to be first discretized into algebraic equations, which are 
then lumped with the original algebraic equations. The Modified 
Euler (ME) (Atkinson, 2008) method are usually used to solve 
these equations at each time step. 

B. Parallel Programming Libraries in Python 

There are many portable CPU or GPU-based parallel 
computing modules widely used in Python, e.g. MPI, 
Multiprocessing (Palach, 2014), PETSc, Numba (Lam, Petrou, 
& Seibert, 2015), and CuPy, etc. Three libraries that are 
leveraged in this work are listed below: 

a) mpi4py: As a standardized message-passing library, 

MPI offers process communications via messages through a 

communication network. mpi4py (Dalcin, Paz, & Storti, 2005), 

which supports point-to-point and collective communications 

of Python buffer objects (NumPy (Walt, Colbert, & Varoquaux, 

2011) arrays, builtin bytes, string, and Python array, etc.) 

provides the capabilities to code MPI programs in Python. In 

this work, it serves as a baseline implementation for parallel 

dynamic simulation development on multi-core CPUs through 

fine-tuned data distribution and explicit inter-processor 

communications from scratch. 

b) petsc4py: PETSc is a C or Fortran-based suite of 

algorithms and data structures for the solution of large-scale 

scientific and engineering problems on high-performance 

parallel computing environments. petsc4py (Dalcin, Paz, Kler, 

& Cosimo, 2011) is an open-source software project that 

provides bindings to PETSc libraries in Python. It offers high-

level interfaces with collective semantics so that users rarely 

have to make explicit message-passing calls to support inter-

processor data communication (Balay, et al., 2001). In this 

work, it serves as an adaptive implementation for parallel 

dynamic simulation development on multi-core CPUs in a 

semi-automated way as it averts the message passing calls and 

leaves the data organization behind. 

c) CuPy: CuPy is a high-level NumPy compatible data 

structure library accelerated with NVIDIA CUDA (Sanders & 

Kandrot, 2010) on the backend. It makes the full use of the GPU 

architecture by directly leveraging CUDA computing libraries 

such as cuSolver (Buck, 2007), cuBLAS (Buck, 2007), 

cuSPARSE (Naumov, Chien, Vandermersch, & Kapasi, 2010), 

and cuDNN (Chetlur, et al., 2014) to support the array 

functionalities and computations. It also provides an API for 

writing customized CUDA C/C++ kernels (element-wise, 

reduction, and raw kernels) with enhanced flexibility. In this 

work, it serves as a portable and resources affordable GPU-

based implementation by making extensive use of CuPy multi-

dimensional array data structure to alleviate the heavy-duty 

computations from CPU to GPU. 

* Corresponding author E-mail: cong2@clemson.edu 

 

Fig. 1. CPU-based parallel strategy with MPI and PETSc. 
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III. PROPOSED APPROACH 

The adaptive development of parallel dynamic simulation on 
different computing platforms allows for extensive evaluations 
of each implementation's computational capabilities and its 
feasibility to the specific engineering problem.  

A. Parallel Implementation on CPU 

Figure 1 summarizes the overall parallel design and 
implementations of dynamic simulation. At the start, the 
working program splits the input data blocks row-wise, meaning 
that each process should own a portion of information of buses 
with n, branches with z, and generators with m in a typical power 
system. Hence, the full arrays used in a serial code can be 
initialized to partial arrays and perform partial computations on 
each process as needed. For example, in a full Y matrix 
formation at each fault condition, the three groups of matrix-
matrix operations involved can be boosted by downsizing the 
configured matrices. The first group in a serial program is shown 
in Eq. 6, 

{
𝐃𝑍𝑁 = 𝛼 ∗ 𝐂𝐇𝑍𝑍 ∗ 𝐅𝑁𝑍

𝑇 + 𝛽 ∗ 𝐃𝑍𝑁
𝐘𝑁𝑁 = 𝛼 ∗ 𝐅𝑁𝑍 ∗ 𝐃𝑍𝑁 + 𝛽 ∗ 𝐘𝑁𝑁

(6) 

where α and ꞵ are scalars. In our parallel approach, since the 

original left side CH matrix is a diagonal matrix with size Z x Z, 
sequentially, it can be initialized and value-assigned on each 
process to ch with the size z x z based on the distributed data size 
z the process holds. In addition, the right side matrix F (N x Z) 
can go with f (N x z) and the additional term D can be changed 
to d with z x N. Consequently, on each process, the operations 
are converted into Eq. 7. By leveraging the outcomes from their 
former group, the other two groups can make their own 
operation like Eq. 7. Finally, each process still obtains a 
resulting N x N y matrix, however, the summation of all y 
matrices from all processes is expected to be equal to the original 
full Y matrix, YNN. 

{
𝐝𝑧𝑁 = 𝛼 ∗ 𝐜𝐡𝑧𝑧 ∗ 𝐟𝑁𝑧

𝑇 + 𝛽 ∗ 𝐝𝑧𝑁
𝐲𝑁𝑁 = 𝛼 ∗ 𝐟𝑁𝑧 ∗ 𝐝𝑧𝑁 + 𝛽 ∗ 𝐲𝑁𝑁

(7) 

After forming the full Y matrix and returning it to all 
processes, the linear system in Eq. 8 and the subsequent matrix-
matrix multiplications in the reduced Y matrix operations, are 
parallelized easily as the large right-hand side matrix YNM can 
be built to smaller YNm on each process. 

𝐘𝑁𝑁 ∗ 𝐗𝑁𝑀 = 𝐘𝑁𝑀  (8) 

Similarly, each process should be able to make its own ymM in 
Eq. 9 based on the split input data and other calculated matrices. 
Therefore, it only solves the work assigned to it and finally 
outputs a partial reduced Y matrix (y’mM). 

𝐲′
𝑚𝑀

= 𝐲𝑚𝑀 − [𝐘𝑀𝑁 ∗ 𝐘𝑁𝑁
−1 ∗ 𝐲𝑁𝑚]

𝑇 (9) 

The remaining work flow of the time-series simulation 
wraps up several computational intensive calculations (Jin, 
Chen, Wu, Diao, Huang, 2015) including: 

• Fault determination and injected power flow solution. 

• Constant impedance conversion. 

• Equations of generator dynamics formation in Eq. 5. 

• Numerical integration. 

The design of the parallel simulation function is that each 
process directly intakes the outcome of partial reduced Y from 
themselves without any additional communications. In another 
word, by taking advantage of y’mM  and the previously 
partitioned information about system and generators, each 
process has the capability to compute the dynamic state 
variables of the distributed number of generators independently 
at a single time step. For instance, the current injection in Eq. 4 
can be expressed as Eq. 10. 

𝐲′
𝑚𝑀

∗ 𝐕𝑀 = 𝐢′𝑚 (10) 

Eventually, after all the processes complete the iterations, the 
master process merges the results together and writes the outputs 
of the program. 

a) MPI: The development of the native MPI program is 

straightforward. A conda environment with Python 3.8.2 and 

the package of mpi4py 3.0.3 is established to take advantage of 

the distributed computing architecture. In terms of the sparse 

nature of a realistic power system topology, instead of only 

using NumPy dense arrays to represent the matrices, SciPy 

(Virtanen, et al., 2020) sparse data type csr_matrix is 

considered to save memory space and computational time, 

especially in the phases of full Y and reduced Y formation. The 

linear algebraic object spsolve() for sparse matrices can also be 

utilized to solve the system equation for each fault condition. 

But as coding MPI program heavily relies on the explicit 

decomposition and distribution of data across processes, this 

approach has a significant limitation in its level of 

implementation difficulty and requires a relatively higher 

parallel programming understanding and skills from the 

developer. 

b) PETSc: Unlike the native MPI-based approach which 

establishes the parallel program by manually keeping all the 

partitioned data and partial matrix operations on each process 

throughout the program to save memory usage and avoid inter-

processor communications, the PETSc-based implementation 

automatically has all the data taking matrix and vector as the 

basic unit to manipulate. These built-in datatypes are highly 

optimized for running on parallel architectures. Once defined 

and allocated in parallel, each processor stores a part of the 

matrix or vector and computes the work locally. As a semi-

automated implementation, PETSc allows developers to 

employ at a high level of abstraction. For example, to reduce 

unnecessary computation workload caused by zero elements, 

we simply set the matrices as mpiaij type, which represents a 

parallel sparse matrix. Appendix B gives a snapshot of some 

representative vector and matrix operations in this 

implementation to demonstrate the simplicity in the semantics 

of PETSc. In addition, PETSc provides a built-in linear iterative 

solver (ksp (Balay, et al., 2019)) and several direct solvers (e.g., 

mumps (Amestoy, Patrick, & Duff, 2001), superlu (Demmel, et 

al., 1999), etc.). In our case, the direct solver with Lower and 

Upper (LU) factorization and approximate minimum degree 

ordering is selected considering the size and sparsity of the 

linear system. Moreover, it also offers other lower-level APIs 

to facilitate any customized operations if the built-in functions 
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cannot meet specific implementation needs. Thus, the variety 

of options for scientific computing brings in better coding 

flexibility and computational efficiency. 

B. Parallel Accelaration on GPU 

In most cases, GPU-based package in Python such as CuPy 
provides a nearly drop-in replacement interface, and meanwhile, 
outperforms NumPy and SciPy on data-level parallelism if the 
problem size of numerical analysis is large enough. As a result, 
we adapt the original serial code by offloading intensive matrix 
and vector operations to GPU. Figure 2 depicts the overall 
implementation strategy of the CuPy program. Except for the 
initial data parsing and a few unavoidable conditional and 
control flow statements, most of the array tasks are substituted 
by the objects and related kernel functions supported by CuPy 
9.0.0 with cudatoolkit 11.2 in the entire program. 

Appendix C reveals the CuPy semantics using the sparse 
matrix-matrix multiplications as an example. In full Y matrix 
computations, cupyx.scipy.sparse._matrix.dot() kernel function 
for sparse matrix allows the array manipulations executed using 
hundreds of GPU tensor cores, which are much faster than 
NumPy dense and SciPy sparse counterparts on CPU. To solve 
the linear system equations and obtain reduced Y matrix, sparse 
function cupyx.scipy.sparse.linalg.spsolve() is able to achieve 
the desired solutions. For the simulation, in one time step, all the 
dynamic parameters of all generators are calculated based on the 
GPU array operations such as dot product, Hadamard product, 
and element-wise addition. 

The CuPy-based approach is very user-friendly and cost-
effective. It is the most concise implementation among the three. 
Given the superb multi-processing capability of GPU, we 
envision this implementation exhibits comparable or even better 
computational performance of parallel dynamic simulation than 
the two CPU-based implementations on large system cases. 

C. Optimization of the Data Structure and Algorithm 

a) Sparse Matrix Operations: The power system dynamic 

simulation program is originally developed with dense 

matrices. However, as dense datatype requires each element to 

be involved in the computation, extra computing efforts and 

resources are needed. As aforementioned, we turn all necessary 

matrix formulations into sparse matrix operations to minimize 

memory usage and speed up data processing. 

b) Adam-Bashforth Integration: Although the ME method 

is the most commonly used integration method in power system 

dynamic simulation, it needs the network equations to be solved 

twice (predictions and updates) at each time step, leading to 

doubled performance cost. Alternatively, the Adams-Bashforth 

(AB) method (Atkinson, 2008) only requires a one-time 

approximation in a loop by utilizing the solutions of the current 

and the last time steps. Unlike our previous work in (Jin, Huang, 

Diao, Wu, & Chen, 2013) and (Jin, Chen, Wu, Diao, Huang, 

2015), in this work, we switch from the ME integration method 

to AB, which theoretically provides a two times speedup 

regardless of any hardware constraints due to one less 

approximation step in each iteration. 

IV. RESULTS AND ANALYSIS 

To validate the proposed approaches and implementations, 
three test cases with different sizes are selected to evaluate the 
computational performance. Each case is run multiple times to 
take an averaged execution time for the evaluation of its 
computational performance with the least bias. 

A. Test Cases 

The smallest-size test case in this study is the realistic 
Polish3120b system. The medium-size 3600b and the largest-
size 8100b are artificial cases derived from a 3g9b system by 
duplicating itself 400 and 900 times, respectively. All the 
parallel dynamic simulations developed in Section III run on all 
testing cases for a 30-second simulation with a time step of 0.005 
seconds. A fault is applied at a selected bus at 3 seconds and 
cleared at 3.05 seconds of the simulation to mimic a system 
disturbance and the relevant generators’ dynamics. The 
dimension of each test case can be found in Tab. 1. 

B. System and Hardware Configuration 

All three working codes are implemented on Clemson 
University’s supercomputing facilities Palmetto Cluster. For the 
two parallel implementations on CPU, a computing node 
consisting of 16 CPU cores (Intel Xeon(R) Gold 6148@2.40 
GHz) with 64 GB memory is requested to imitate the limit of 
hardware resources and perform the tasks. For the GPU 
accelerated program, with a powerful Tesla V100 16 GB GPU, 
only 1 CPU core with 4 GB memory is enough as there are few 
operations in the program that need CPU. 

C. Performance Improvement 

Remarkable improvement in computational performance has 
been observed due to the following two design and development 
strategies applied in all three implementations. 

a) Sparse Matrix Operations: Table 2 lists the 

performance of Full Y manipulations for Polish3120b (Y 

Sparsity = 0.9989) in MPI version using dense and sparse 

matrix respectively as an example. By converting matrix data 

type, the computational performance for Full Y formation is 

 

Fig. 2. GPU accelerated approach for dynamic simulation. 

 

TABLE I.  POWER SYSTEM TEST CASES 

Test Case Bus Branch Generator Source 

Polish3120b 3120 3693 93 MATPOWER 

3600b 3600 3602 1200 400 x 3g9b 

8100b 8100 8102 2700 900 x 3g9b 
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largely improved and furthermore greatly contributed to the 

reduction of the total dynamic simulation time. 

b) Adam-Bashforth Integration: Table 3 displays the 

execution time of the integration methods by running the MPI-

based program with 4 MPI processes as an example, which 

shows a 1.6+ times speedup on all test cases. Likewise, the 

PETSc and CuPy-based implementations also exhibit a similar 

boost after the switch. Figure 3 gives a comparison of 

integration output from PETSc on a generator’s machine speed 

value using the ME method vs. the AB method. The slight 

differences between each other demonstrate the accuracy of 

applying the Adam-Bashforth method in dynamic simulation 

besides its faster computational capability. 

D. Scalability Analysis 

For our two CPU-based implementations, as the number of 
computing processes increases, the computation times are 
expected to decrease until the capability is limited by the 
problem size once a certain number of computing processes is 
reached. The speedup of each program is obtained by dividing 
the computation time of single-process serial run over the multi-
process parallel run under specific numbers of processes. For 
CuPy-based implementation, since the GPU’s computing power 
is fixed, CuPy makes extensive use of its well-optimized CUDA 
kernel resources to allow for maximum performance against 
non-GPU approaches. The entire testing results are summarized 
in Appendix A and the performance curves are plotted in Fig. 4  
for better illustration. A horizontal straight line is used in each 
plot to represent CuPy's performance since it does not require 
multiple CPU processes to run in parallel. 

a) Polish3120b Case:  

• MPI: peak performance (1.34 seconds) is reached at 8 
processors with a 2.66-time speedup comparing to its 
serial run. Consistent performance gains are achieved 
until 16 processors are used when the communication 
overhead begins to counteract the profit of 
parallelization.  

• PETSc: it takes 0.87 seconds when running in serial. It 
reaches the best computational performance of 0.74 

seconds with a speedup of 1.18 times when utilizing 8 
CPU processors. The contribution to the scalability in 
this implementation mainly comes from the parallelism 
of the Reduced Y matrix potion. The contribution from 
the Full Y matrix formulation is quite limited due to its 
high sparsity and low computational intensity. 

• CuPy: it has a 2.86-second total execution time to 
complete the computation. Even though such a GPU-
based program has the best performance in matrix and 
vector operations and linear algebraic solutions which 
significantly reduce the computing time in Full Y matrix 
and Reduce Y matrix formation, an enormous kernel 
launch overhead in each time step at the Simulation 
phase ruins the overall performance when the matrix size 
is not large enough to guarantee a high weight in the 
entire computation.  

b) 3600b Case: In the moderate-size 3600b case, the 

computational intensity increases dramatically due to the 

significantly increased number of generators. It results in larger 

matrix-matrix operations and linear equations solving in terms 

of the Full Y matrix and Reduce Y matrix formations, and 

incurs increased complexity to compute generator state 

variables in the Simulation phase.  

TABLE II. THE EXECUTION TIME (SEC) OF FULL Y MATRIX FORMATION IN 

NATIVE MPI USING DIFFERENT (DENSE AND SPARSE) MATRIX TYPES 

Process 1 2 4 8 16 

Dense 125.55 46.14 18.96 8.97 4.71 

Sparse 1.71 0.72 0.34 0.17 0.11 

 

TABLE III. PERFORMANCE COMPARISON (SECOND) IN THE SIMULATION 

FUNCTION BETWEEN TWO METHODS IN MPI WITH 4 PROCESSES 

Test Case / 

Method 

Modified 

Euler 

Adam-

Bashforth 
Speedup 

Polish3120 0.81 0.49 1.66 

3600b 1.04 0.66 1.65 

8100b 1.61 0.95 1.69 

 

 

 

Fig. 3. A comparison of simultion results between the Adam-Bashforth and 

the Modified Euler methods. 

 

Fig. 4. The total performance (time) to finish each test case using three 

approaches (CuPy is fixed). 
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• MPI: program reaches its peak performance (2.26 
seconds) at 8 processors. Impressive scalability is 
observed in all phases of the executions. Compared to the 
Polish3120b case, the program run time does not bounce 
up when the number of processors is increased from 8 to 
16. Since the computation intensity is greatly larger than 
the Polish3120b case, at least 5 times longer Reduced Y 
operation can be observed at each process number.  

• PETSc: it runs in 6.41 seconds in sequential. The 
execution time drops to 1.40 seconds with 16 processors, 
a speedup of 4.6. The scalability from the Full Y matrix 
formation remains limited due to the small change of bus 
and branch sizes. However, better scalability in Reduced 
Y matrix formation and Simulation are consistently 
observed as the big increase of generator size (from 93 to 
1200) significantly contributes to the density of the 
matrices being manipulated in these two phases.  

• CuPy: it is again marked as the best one in Full Y and 
Reduced Y, however, it takes time to finish the 
Simulation. The problem size is still not large enough to 
occupy a larger proportion of the overall execution. 

c) 8100b Case: The 8100b system is purposely made 2.25 

times larger than the 3600b case for further evaluation on the 

potential impact of increased system size on the performance of 

parallel implementations.  

• MPI: peak execution performance (11.68 seconds) 
occurs at 8 processors with a 2.96-time speedup 
comparing to its serial run. Although consistent close-to-
linear scalability is achieved at each phase of the 
execution, the most time-consuming part changes from 
the Simulation to the Reduced Y matrix formation, 
which implies a higher computational burden of linear 
system solving in this phase as the problem size 
continues to increase. 

• PETSc: the scalability of this case is on the same track as 
the 3600b one. With 16 cores, the total execution time is 
reduced to 4.88 seconds, which is only 16% of a 
sequential run. Similar to the native MPI program, the 
solution time of linear systems at the Reduced Y matrix 
formation phase begins to dominate the computation in 
the entire program. 

• CuPy: it finally starts to show powerful GPU-based 
computing efficiency as the problem size becomes 
larger. The cumbersome linear system solving in 
Reduced Y matrix formation remains solvable in a 
considerably short time (0.06 seconds). The entire 
program can be run within 3.14 seconds in this GPU-
based implementation, which already outperforms the 
other two CPU-based implementations. 

E. Discussion 

From the comparison above, following observations are 
identified: 

a) The native MPI-based implementation has the 

advantage of explicitly decoupling the problem with fine-tuned 

algorithms but at a cost of high programming effort. The 

strategies to split the data from the beginning have significant 

impacts on the alleviation of Full Y matrix and Reduced Y 

matrix operation burdens. Best scalability can be achieved 

across the three cases as a result of this effort. However, the 

parallel communication routine MPI.Allreduce(y) becomes 

more significant with the increased processor number and 

problem size because multiple large matrix additions and the 

collective communication between processors are required. 

Furthermore, since the MPI routines only take buffer-like 

Python objects for the communications, sparse arrays must be 

switched back to dense type at their full dimensions, resulting 

in an unavoidable large data transfer and relatively low total 

performance gain. Therefore, the MPI-based approach is not 

recommended for modeling large-scale power systems.. 

b) The semi-automated PETSc implementation reduced 

the complexity of parallel programming. Like MPI, it requires 

several collective communication calls (VecScatter(), toAll(), 

and toZero(), etc.) for the Full Y matrix and Reduced Y matrix 

formations to guarantee every single parallel step can be built 

successfully. Nonetheless, its highly abstracted and optimized 

routines support sparse and compressed data operations and 

communications throughout the entire program. PETSc also 

makes a huge gain to perform vectorized matrix operations if 

the process number increases. As a result, both the 

communication and computation are more efficient as 

compared to the MPI-based implementation. It's recommended 

as a good candidate to solve dynamic simulation for small to 

medium-size systems. 

c) The GPU-based implementation simply changes the 

original NumPy methods in serial code to CuPy related 

functions. Thus, the parallel program is highly element-wise 

operation-based and easy to implement. From the observations, 

it has the best capability to resolve Y and Reduced Y, but costs 

a lot in the Simulation phase due to the overhead of kernel 

launch in each iteration. Based on the overall testing results, it 

is highly recommended for solving large-scale dynamic 

simulation in parallel. 

V. CONCLUSION AND FUTURE WORK 

This paper adaptively presents three parallel Python-based 
implementation approaches to speed up power system dynamic 
simulation application on multi-core CPUs and many-core GPU. 
Sparse matrix operations and a fast integration method are 
applied to improve the computational performance of all 
implementations. Benchmarking tests are made to evaluate the 
feasibility and capability of each implementation in terms of 
matrix manipulation, linear system solving, and simulation 
integration for power systems at different size levels. For small 
and medium cases, the PETSc version is the best option using 
limited CPU cores and memory. CuPy GPU computing is 
portable, cost-effective and suitable to run more complex 
systems. Future work involves the further optimized CPU and 
GPU versions, and real-time data analytics and visualization, 
which are also considered to be incorporated into this work to 
build a seamless data processing, computation, and analysis 
pipeline to facilitate integrated comprehensive studies on fast 
electric power system dynamic simulation in one unified HPC 
environment.
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APPENDIX 

A. COMPARISON OF THE EXECUTION TIME (SEC) OF PYTHON-BASED IMPLEMENTATIONS ON DIFFERENT CASES 

 POLISH3120B 3600B 8100B 

METHOD PROCESS FULL Y REDUCED Y SIMULATION TOTAL FULL Y REDUCED Y SIMULATION TOTAL FULL Y REDUCED Y SIMULATION TOTAL 

MPI 

1 1.71 0.33 0.58 3.56 1.83 2.79 1.19 7.82 9.54 13.14 2.27 34.59 

2 0.72 0.17 0.51 2.06 0.75 1.42 0.84 4.32 3.82 6.48 1.35 19.09 

4 0.34 0.10 0.49 1.49 0.36 0.72 0.66 2.78 1.67 3.25 0.95 13.95 

8 0.17 0.06 0.55 1.34 0.18 0.39 0.60 2.26 0.80 1.63 0.79 11.68 

16 0.11 0.05 0.78 1.68 0.10 0.27 0.58 2.33 0.41 0.96 0.76 11.90 

PETSC 

1 0.03 0.42 0.27 0.87 0.03 5.53 0.75 6.41 0.06 28.38 1.60 30.27 

2 0.06 0.40 0.27 0.84 0.05 3.82 0.49 4.47 0.07 19.64 0.91 20.84 

4 0.05 0.35 0.31 0.81 0.04 2.26 0.40 2.80 0.05 11.48 0.61 12.34 

8 0.05 0.27 0.33 0.74 0.04 1.39 0.37 1.88 0.05 6.75 0.47 7.46 

16 0.05 0.26 0.40 0.81 0.04 0.89 0.38 1.40 0.05 4.18 0.46 4.88 

CUPY  0.026 0.016 2.49 2.86 0.023 0.021 2.49 2.89 0.023 0.06 2.58 3.14 

B. PETSC SEMANTICS EXAMPLE C. SPARSE MATRIX-MATRIX MULTIPLICATION IN CUPY 
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