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ABSTRACT  

Cracks in metallic surfaces fail industrial systems, compromising 

systems' safety and productivity. It is therefore imperative to detect 

such cracks in their initial stage, so preventive measures can be taken 

to avoid downtime and associated risks. In this paper, we report the 

novel adaptation and application of the YOLO v11-seg model for 

precise crack segmentation in metallic surfaces. The specialized 

configuration optimizes both detection accuracy and inference speed, 

making it suitable for industrial applications. The deep learning model 

is integrated into a Human-Machine Interface (HMI) using the Open 

Neural Network Exchange (ONNX) format, to enable seamless real-

time visualization and interaction. This enhances usability for 

industrial operators, bridging the gap between advanced AI models 

and practical deployment. We report a fully functional and versatile 

inspection tool by combining the deep learning model with hardware 

and real-time video processing via Python. A custom dataset 

comprising 1,111 training and 246 test images was curated, annotated 

with segmentation masks, and augmented using the Albumentations 

library to improve generalization. The model showed detection and 

segmentation precisions of 96% and 94%, respectively. 
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I. INTRODUCTION  

Due to the increase in the development of industries, it is 
necessary to be attentive to the durability and storage of metals 
used in building construction, pipelines, mechanical tools, 
aerospace, automobile industries, and many other sectors. As the 
demand for metal materials such as iron, aluminum, and copper 
increases globally, set to rise by 2 to 6 times by 2100 due to 
infrastructure development (Watari et al., 2020), the risks 
associated with fatigue, stress concentration, and the impact of 
the environment on structures with microcracks are increasing. 
Cracks can make machines and structures unsafe, less efficient, 
and expensive to fix, or even cause serious damage. 

Traditional crack detection methods include ultrasonic 
testing, radiographic testing, and Eddy Current Testing. 
However, these methods have some drawbacks. They are 
frequently time-consuming, require skilled use, and may miss 
minor or deep cracks (Shen et al., 2024). This demonstrates the 
importance of improved cracking detection methods for various 
sectors. This is the outcome of substantial advances in computer 
vision and machine learning algorithms for material damage 
diagnosis, which aim to reduce hazards and extend the overall 
durability of metal structures while incurring lower maintenance 

costs. It remains a significant problem to create models that can 
handle many materials, detect minute flaws, perform rapidly, 
and be simple to use. 

This project aims to solve these problems by a deep learning 
model for finding and outlining cracks, with a simple interface 
for users. The goal is to make crack identification more accurate, 
the process more efficient, and adaptable to different types and 
materials. This method is crucial for monitoring the health of 
structures, offering both improvement in detection and an easy-
to-use interface for real inspections. 

The paper is structured as follows: Section II of this paper 
presents other related literature in the field, while Section III 
presents the methodology, training process, experiment, and 
result. Lastly, Section IV provides the conclusion, the result and 
suggestion for further research. Finally, the acknowledgment 
section follows. 

II. RELATED WORK 

Crack detection has been addressed through various 
approaches, which can be categorized based on their underlying 
methodologies, including semantic segmentation, threshold 
segmentation, edge detection, and others. 

Semantic segmentation is widely used for crack detection 
due to its ability to perform pixel-level classification. Several 
methods have been proposed to improve performance in terms 
of precision, recall, speed, and robustness to different crack 
patterns. For instance, KTCAM-Net combines classification and 
segmentation, achieving an F1-score of 88.6%, precision of 
88.7%, recall of 88.2%, and 28 FPS (Al-Huda, Peng, Algburi, 
Al-antari, AL-Jarazi, & Zhai, 2023). ADDU-Net, an asymmetric 
dual-decoder U-Net, improves crack detection accuracy with an 
F1-score of 78.1%, precision of 84.6%, recall of 72.4%, and 35 
FPS (Al-Huda, 2023). A deep learning approach using U-Net 
and YOLOv7 for bridge deck crack analysis reached an F1-score 
of 78.1% and a crack length detection accuracy of 92.38% (Tran, 
2023). For tiny cracks in steel beams, the FCN-SFW fusion 
algorithm achieved an F1 score of 68.28% with a 1.58-second 
inference time (Wang, 2020). AFFNet, utilizing ResNet101 with 
attention modules, attained an MIoU of 84.49% and 52 ms 
inference time for concrete crack detection (Hang, 2023). PCSN, 
using SegNet, reported a recall of 50% and mAP of 83% (Chen, 
2020), while DEHF-Net, with dual-path encoding, achieved 
86.3% precision and 92.4% recall (Bai, 2024). The 
Student+Teacher Model with EfficientUNet demonstrated 
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strong semi-supervised performance with an F1-score of 
83.21% (W. Wang & Su, 2021). Mask R-CNN achieved an F1-
score of 78.47% for crack detection in concrete structures 
(Yamane & Chun, 2020). These studies show the progress and 
challenges in using semantic segmentation for crack detection. 
They also point out that there are still many opportunities for 
more research and improvement in this area. 

When threshold segmentation methods are combined with 
image processing, they are often used for crack detection. For 
instance, the Threshold-based WSIS framework (T. He et al., 
2024; H. Zhang et al., 2022) delivered solid results, with an F1 
score of 66%, precision of 52%, recall of 90%, and accuracy of 
98%. It effectively bridges the gap between unsupervised and 
supervised methods for detecting pavement cracks. Another 
study (Z. He & Xu, 2024) improved Otsu thresholding by 
integrating it with YOLOv7, reaching an impressive 98.4% 
accuracy for detecting crack repair traces, with an inference time 
of just 8.9 seconds, significantly better than the original method. 
Likewise, Local thresholding with a DCNN (Su et al., 2022)  
accomplished an F1 score of 91%, precision of 92%, and recall 
of 91% for bridge crack detection. Although these methods are 
efficient, they confront difficulties in adapting to varying 
lighting conditions and complex crack patterns. 

Sobel and Canny edge detection methods when integrated 
with deep learning algorithms can identify cracks more 
efficiently. For instance, a study (Luo et al., 2023) combined a 
version of Canny with DeepLabV3+ for better feature 
integration. The performance outcome resulted in a 6.5% 
increase in MIoU and an F1 score of 63%. (Ranyal et al., 
2024)utilized a vehicle-based approach with GPS-tagged 
images, and an attention-enhanced RetinaNet was trained, 
achieving an F1 score of 85.21%, precision of 85.96%, and 
recall of 84.48%. Additionally, (K. Liu & Chen, 2023)presented 
Crack-DA which is an unsupervised domain-adaptive 
framework. The study applied methods based on depth and edge 
information reached an F1 score of 74.7% on UAV data. 

When it comes to crack recognition and segmentation, 
region-based approaches such as Mask R-CNN and YOLO 
place an emphasis on spatial features. For tunnel defect images, 
(Xu et al., 2021) used a Mask R-CNN with Path Augmentation 
Feature Pyramid Network (PAFPN) and achieved 92.03% 
precision and 96.26% recall. While YOLOv4 (J. Zhang et al., 
2023) obtained 93.96% accuracy and 92% F1-score with 
minimal processing load. A Mask R-CNN model (Z. Liu et al., 
2023) for non-destructive testing of asphalt cracks using GPR 
images had an average precision of 83.3%, F1-score of 82.4%, 
and mIoU of 70.1%. 

Morphological operations, when used with deep learning, 
improve crack segmentation and classification. For example, a 
Mask R-CNN model that used morphological closing (Huang et 
al., 2022) reached an F1 score of 68.68% for tunnel lining 
segmentation. Then, there’s the Parallel ResNet method (Fan et 
al., 2022), which did even better with an F1 score of 93.08% on 
the CrackTree200 dataset for pavement crack detection. Finally, 
when U-Net models combined with morphological operations 
(Dong et al., 2021), enhanced the segmentation of steel fatigue 
cracks, achieving an mF1 score of 42.79%. InceptionV3 
(Nguyen et al., 2023), applied to ASR cracks, achieved an F1 

score of 93.7% and an accuracy of 94.07%, providing an 
efficient AI solution for structural health monitoring. 

Despite advancements in Crack detection, some challenges 
remain including limited data, imbalanced classes, and 
generalization across materials and types. High computational 
cost and real-time industrial integration are also some major 
limitations. To address these issues, this paper proposes an 
improved model using deep learning techniques to enhance 
accuracy, improve efficiency, and increase adaptability across 
different industrial applications. The developed model showed 
higher performance, speed, and better generalization compared 
to the models discussed in related works, even with a relatively 
small dataset. We successfully integrated this model into a WPF 
application using C# for backend operations. Reliance on 
Python libraries is eliminated, showcasing the feasibility of 
deploying models trained in one library across different 
platforms, simplifying the process, and providing users with an 
intuitive interface for inspection. 

III. METHODOLOGY 

A. Dataset Preparation 

The method of detecting cracks using convolutional neural 
networks (CNNs) needs a variety of datasets to learn important 
features. To achieve this, we collected small open-source 
datasets focused on metal cracks of different sizes and shapes, 
such as those in metal sheets, welds, pipes, and machine parts. 
Figure 1 shows examples of cracks in metal parts, including 
welded joints, pipes, gear teeth, and bicycle frames. These 
cracks are difficult to find because they have different shapes 
and appear in random locations. Finding them is important to 
keep structures and machines safe and working properly.  

To prepare the dataset, we removed low-quality or irrelevant 
images and made sure the labels were accurate. While some 
datasets already included basic augmentations, we added more 
enhancements such as rotation, flipping, translation, noise, and 
adjustments to brightness and contrast. These were based on 
existing methods (Golding et al., 2022; Z. Wang et al., 2020) 
and implemented using the Albumentations library (ÖNLER & 
Eray, 2018). Figure 2 shows how these data augmentation 
techniques and annotations improve crack detection. It 
highlights different crack patterns, orientations, and surfaces, 
marked with bounding boxes and outlines. These changes make 
the model more reliable by helping it handle different lighting 
conditions, angles, and backgrounds.  

Fig. 1. Dataset Sample 
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The images were manually labeled with bounding boxes and 
segmentation masks using CVAT (Computer Vision Annotation 
Tool), which is a tool for labeling images (Guillermo et al., 
2020). After augmentation, the dataset contained 1357 images, 
1111 for training, and 246 for testing. YOLOv11 was used to 
train and evaluate the model. 

 

Fig. 2. Augmented and annotated data samples showing metallic cracks 

B. Model Architecture 

YOLOv11 is an improved version of YOLO; it has a shorter 
response time and increased accuracy. Building on YOLOv8, it 
introduces features that improve performance in tasks such as 
posture estimation and instance segmentation (Khanam & 
Hussain, 2024). In the model's backbone, the researchers 
employ smaller convolutions to enhance speed. The image 
processing consists of blocks, which increases the focus on 
priorities, improving the identification of both tiny and hidden 
objects. It further enhances image recognition, in which 
knowledge from one phase of the visuals is combined with 
knowledge from other phases. Extra layers are added to make 
more precise estimations. In summary, YOLOv11 is faster, 
more efficient, and better suited for real-time object recognition 
across diverse computer vision applications. 

C. Experimental Environment 

The experiment environment of this article is: Google Colab 
with GPU acceleration. NVIDIA Tesla T4 GPU (16 GB 
VRAM), an Intel Xeon processor, 13 GB RAM, and Ubuntu 
20.04 with Python 3.10.12. 

D. Training Process 

This research employed a supervised learning approach with 
labeled training data, annotated in YOLO format via CVAT. The 
data included class IDs, coordinates, width, height, and key 
points for masks. A YAML file organized the image and label 
details. Training and evaluation were conducted Google Colab 
with GPU support, using the YOLOv11-seg model for 200 
epochs, a batch size of 16, and an input size of 640x640 pixels. 
The learning rate started at 0.002 and was optimized, with 
Automatic Mixed Precision (AMP) enabled for faster 
processing. The model’s performance plateaued after 160 
epochs, leading to early termination. After training, the model 
was converted to ONNX format, enabling smooth deployment 
across different platforms. Figure 3 shows the metal crack 

detection system in the WPF application. On the left, it displays 
a welded joint image with a crack highlighted in red. On the 
right, it shows a video frame with a detected crack marked as 
"Crack 0.82" inside a blue box. Users can select folders, detect 
cracks, navigate through images and videos, and save results. 
They can also browse pre-recorded or live video, select a 
camera, and adjust settings like the confidence threshold and 
frame interval. Auto-processing can be enabled to automatically 
process all images from the selected folder, saving results, 
including bounding boxes and segmentation masks, to the 
desktop folder. The system uses the YOLOv11-seg model for 
accurate crack detection. The model’s architecture, Input 
format, and Output analysis, all were verified by using Netron. 
The values obtained are (1, 37, 8400) for bounding box 
predictions and (1, 32, 160, 160) for segmentation masks. The 
first output includes bounding box coordinates, confidence 
scores, and class probabilities, while the second represents 32 
predicted masks. Mask at index 11 was selected as it gave better 
results in comparison to others. Subsequently, the ONNX model 
was integrated into a WPF application with an easy-to-use 
interface for image processing. To improve detection, Non-
Maximum Suppression (NMS) was used to remove extra 
bounding boxes. This setup made the application standalone, so 
external tools like Python environment were not required. Video 
processing was also added to the app, using Python scripts to 
handle both live and pre-recorded videos with adjustable frame 
rates to save on computing power. Both methods have their 
advantages. The integrated WPF approach provides a smooth, 
low-resource experience, making it easy to deploy a standalone 
application. On the other hand, the Python-based method offers 
real-time video processing, greater flexibility, and quicker 
model updates. 

 

Fig 3. Metal Crack Detection in Image and Video via WPF App 

E. Experiments and Results 

This experiment focused on crack segmentation, where the 
YOLOv11 model identified cracks pixel-wise. Evaluated on a 
test dataset, it showed strong precision and recall for both 
bounding box detection (precision: 96.58%, recall: 93.43%) and 
segmentation (precision: 94.69%, recall: 91.61%). The model 
achieved excellent mAP50 scores of 96.88% for detection and 
93.53% for segmentation at an IoU threshold of 50%, 
demonstrating its ability to detect cracks of various sizes and 
types. Figure 4 highlights the predicted results on the test 
dataset. YOLOv11 effectively detects and segments both thin 
and thick cracks in materials like metal sheets, pipes, and weld 
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joints, providing bounding boxes with confidence scores. It 
identifies fine cracks (e.g., img5.png, 0.89 confidence) and 
thicker cracks (img6.png, 0.93 confidence). However, 
occasional misses and low-confidence detections suggest 
limitations due to a small training set and less distinct features. 
With an inference speed of 12.71 milliseconds per image, 
YOLOv11 is well-suited for real-time crack detection 
applications. 

 

Fig 4. Predicted results on test dataset 

F. Comparison with other Models 

The crack detection model of this study was compared with 
several popular methods, including models that use semantic 
segmentation, edge detection, region-based methods, and more. 
Figure 5 shows the performance (Precision, Recall, and F1 
Score) of different crack detection models, including KTCAM-
Net, ADDU-Net, YOLOv7, U-Net, CGTr-Net, Efficient U-Net, 
Mask R-CNN, and the new YOLOv11. YOLOv11 gives the best 
results with the highest Precision (94.69%) and Recall (91.61%) 
and has a fast inference time of 12.71 ms. It processes images in 
0.027 seconds on average, achieving 37.11 FPS. YOLOv11 
works well on different crack shapes, even small and unbalanced 
datasets, making it a good choice for real-world use. The above 
results suggest that YOLOv11 is one of the best models for real-
time crack detection in the industry. Our model, built on the new 
YOLOv11, shows clear improvements in precision, recall, and 
speed, solving many problems found in earlier models. 

TABLE 1. PERFORMANCE COMPARISON 

Model 
Prec 

 (%) 

Rec 

 (%) 

F1 

 (%) 

Inf Time  

(ms) 

KTCAM-Net  

(Al-Huda, Peng, et al., 2023) 
88.7 88.2 88.6 42 

ADDU-Net  

(Al-Huda, et al., 2023) 
84.6 72.4 78.1 28 

U-Net (Tran et al., 2023) 83.5 72.9 77.8 - 

CGTr-Net (Wang, Leng, & Zhang, 2024) 88.8 88.3 88.7 - 

Efficient U-Net (W. Wang & Su, 2021) 83.11 86.06 83.2 - 

Mask R-CNN  (Z. Liu et al., 2023) 83.3 - 82.4 4.2FPS 

Our Work 94.69 91.61 93.1 12.71 

 

 

 

 

 

 

 

 

 

 

Fig 5. Performance of Different Crack Segmentation Models 

IV. CONCLUSION 

In this study, real-time crack detection and segmentation on 
metallic surfaces is introduced using the YOLOv11-seg model. 
The model demonstrated high precision (96.58%) and recall 
(93.43%) in detecting cracks, along with strong segmentation 
performance (precision: 94.69%, recall: 91.61%). This makes it 
ideal for use in industrial inspection, in such areas where quick 
and efficient inspection is needed. Through the implementation 
of the model in the WPF application using the ONNX format, 
we developed an effective and adaptive approach for industrial 
operators to leverage AI in the industry. 

In comparison with other models like KTCAM-Net, ADDU-
Net, and Mask R-CNN, the developed model outperforms others 
in precision and speed, requiring only 12.71 ms on average to 
generate predictions for images. This makes YOLOv11 suitable 
for addressing a variety of crack types where the shapes can be 
complex and the sample datasets may be small. Compared to 
traditional systems that require highly skilled workers and 
significant time investment, the proposed system offers an 
efficient solution for monitoring the health of metallic 
structures. 

The results reaffirm the necessity of incorporating deep 
learning with other HMI tools to respond to critical difficulties 
in industrial crack identification. The real-time image and video 
processing capabilities expand the deployment of the 
technology into aerospace, construction, and manufacturing 
industries, reducing risks and minimizing time wasted on 
equipment and structures. 

However, our experiment also showed some drawbacks: the 
precision of crack detection was insufficient for very small 
cracks, and low illumination conditions affected the 
performance of the algorithm. These limitations point out 
important areas for future improvement. Expanding the dataset 
to include more crack types and structural conditions, along with 
refining the model, could significantly enhance its accuracy and 
robustness. 
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