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ABSTRACT  

Online Portfolio Selection (OLPS) requires a careful mix of assets to 

minimize risk and maximize rewards over a trading episode. The 

stochastic, non-stationary aspect of the market makes decision-making 

very complex. Heuristic methods relying on historical returns were 

traditionally used to select assets that found a balance of risk and 

reward. However, improvements in modeling time series from Neural 

Networks led to new solutions. Deep Reinforcement Learning (DRL) 

has become a popular approach to solve this problem, but its methods 

rarely reach a consensus among publications. In other fields, solutions 

using non-Markovian state representations are frequent. Crafting 

rewards to improve agent learning is common but has effects on the 

resulting behaviors. The resulting processes are rarely compared to 

other recent State-of-the-Art solutions but to heuristic algorithms. The 

proliferation of approaches motivated us to benchmark them using 

traditional financial metrics, and evaluate their robustness over time 

and across market conditions. We aim to evaluate the contributions to 

measured performance from each method in market representation, 

policy learning and value estimation.  

Keywords: Online Portfolio Selection, Deep Reinforcement Learning, 

Resource Allocation, Robustness Analysis 

I. INTRODUCTION 

Traditional Portfolio Selection involves allocating funds across 
predefined financial assets. Several existing methods can be 
used to solve this problem. These usually rely on historical 
standard deviation of returns, the volatility, correlations 
between assets and their expected change. A balance between 
maximizing rewards and minimizing the risk of losing value 
can be found through statistical means and Dynamic 
Programming (Markowitz, 1952). 

The main difficulties that arise from this field are linked to the 
nature of the market. It is stochastic with a large proportion of 
aleatoric uncertainty, and is non-stationary, where the 
parameters of underlying models evolve with time. Properly 
estimating dynamics is complex and rarely accurate. Instead, 
we seek to find positions, which minimize the effect of 
unexpected shifts. This requires anticipation and planning. 
Furthermore, epistemic uncertainty leads to unstable models, 
with limited usable timeframes. Therefore, the objective is for 
our strategies to perform well now, but also to maintain a 
similar performance over time.        

*Corresponding author E-mail: marc.velay@centralesupelec.fr 

Online Portfolio Selection (OLPS) is a problem that requires 
solutions from Finance, Optimization and Dynamic Control, 
based on Reinforcement Learning (Pigorsch, 2021; Ye, 2020; 
Zhang, 2020). Similar to traditional Portfolio Selection, it seeks 
to find the best compromise of returns and risk, but also evolves 
the positions at intervals. OLPS solutions rely on Deep 
Learning to find the optimal positions. Few components of 
published solutions have reached a consensus. Multiple 
methods are employed for representing the market, choosing 
reward functions, evaluating performance or which learning 
algorithms to use. Each individual choice has theoretical 
differences which modify how the problem is viewed and 
solved. Separating contributions from each component and the 
variability from using different datasets at different periods is 
complex and prevents establishing a state of the art 
methodology for OLPS. 

In our work, we focus on DRL approaches within three blocks: 
State representations, learning algorithms and reward 
functions. These are defined in the Preliminaries section. We 
have excluded comparing action shaping as we rely on 
continuous actions using softmaxed allocation weights vectors, 
as one of the few components with a wide consensus 
(Benhamou, 2020; Liang, 2018; Ye, 2020; Zhang, 2020). Our 
experiment training and backtesting processes are done with 
domain constraints in mind, to ensure proper results. Within 
this framework, we measure overall performance, performance 
over time and robustness to changes in market conditions and 
to worse-case scenarios. 

II. PRELIMINARIES 

A. Reinforcement Learning 

Deep Reinforcement Learning consists in learning a Policy, a 
choice of actions, that maximizes a reward function given 
observations of an environment. This problem is often 
formulated within the framework of a Markov Decision Process 
(MDP) as a 4-tuple (𝓢,𝓐,𝓟,𝓡).  

The observations, which MDP assumes are enough to inform 
the agent in making optimal decisions, are denoted st∊𝓢. These 

transitions are sampled from the distribution of probabilities 𝓟: 

𝓢 ⨯ 𝓐 ⨯ 𝓢 ⇾ [0,1], where 𝓐 is the set of possible actions. 

From these transitions, we can observe a new state st+1 and an 
immediate reward r ∊ 𝓡. 
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By interacting with the environment, the agents learn 
estimations of value functions. When explicit, these are 
mappings of expected rewards from a given state for each valid 
action. Instead, implicit methods predict actions directly from 
the observations, using mechanisms such as the Actor-Critic 
algorithm. The learning algorithms we explore in our 
benchmark are DDPG, ADDPG, PPO, and SAC (Benhamou, 
2020; Li, 2019b; Liang, 2018). 

B. Market Interaction 

Market observations fall under three categories. The first is 
strictly Markovian, which uses only current prices and 
allocation (Li, 2019b). This includes financial indicators, such 
as movement direction, momentum, and volatility. The last two 
are non-Markovian, using multiple observations containing 
only historical asset information (Liang, 2018) or asset and 
contextual historical information (Benhamou, 2020). Each 
category aims to reduce the market noise and extract some 
information using various levels of domain knowledge. 

The actions a ∊ 𝓐 are the outputs of an agent’s policy. They 

express the portfolio allocation weights for each asset, 
including liquidity. The result is a [k+1] continuous-valued 
softmax vector. An allocation is expressed at each iteration, at 
each start of a business day, based on information from 
previous observations. 

C. Metrics 

We evaluate Portfolio Selection strategies over a fixed period. 
The first metrics will compute an overall performance across 
the whole period. We use Net Returns, corresponding to the 
normalized difference in value between the start and T, the 
trading horizon. The metric describes how well the agents 
behaved but gives little information about generalization. 

The second type evaluates risk-to-return ratios, comparing a 
portfolio's returns to fluctuations (Benhamou, 2020). The 
Sharpe ratio compares the portfolio's returns over a predefined 
threshold to the returns' standard deviation. The Sortino ratio 
has a similar approach but replaces the total standard deviation 
with the downward deviation, only looking at negative returns. 
These metrics give an estimate of the stability of strategies. 
Investors may be inclined to less total gains but smaller, 
guaranteed returns. 

The third type evaluates the robustness of the algorithms 
(Moos, 2022). For this, we first focus on CVaR, the 5% worse 
observed returns, corresponding to the worse expected losses 
by the strategy. Then, we look at performance over time by 
computing the return and risk metrics over shorter windows. 
Plotting these results gives a qualitative value but can be 
quantitatively compared using the maximum difference and 
standard deviation in measurements. 

III. EXPERIMENTS 

The experiment relies on market data composed of stocks from 
the CAC40, commodities futures, and Forex pairs, totaling 18 
assets. Previously cited papers use between 4 and 10 assets. 
Capturing a broader picture of the market can provide more 
diverse, stabler portfolios. We used data from 2002 to 2019 for 
training, validation, and testing for the experiment. The last 

years, 2020-2022, are reserved for backtesting our strategies. 
The raw data comprises Open, High, Low, and Closing prices 
and Volume (OHLCV). The other information in observations 
is computed based on sliding windows of OHLC prices. To 
avoid leaking information to other subsets, we include the 
sliding window length required to compute indicators in the 
following subset. These subsets are randomly sampled from the 
17 years and distributed over the whole period. 

We follow an identical training process for each learned model. 
First, we run a hyperparameter (HP) search using Optuna on 
pre-defined spaces. Second, we initiate each algorithm from a 
set of seeds for reproducibility and the best sampled HP. Third, 
we train the agents on the equivalent of 1000 iterations of the 
training set, which we sample randomly. Adding iterations has 
proven to decrease training performance due to the low volume 
of data available. The agents generally reach a plateau before 
this threshold and perform worse afterward. Finally, we select 
the agent with the best validation score or the latest trained 
iteration based on the test set performance. Their performance 
may vary, and the test set gives a better impression of their 
generalization capabilities than validation scores. 

To evaluate the performance of DRL algorithms in different 
conditions, we select periods inside the backtesting set. To 
qualify for either bull or bear markets, we must observe a down 
or upwards trend for at least three months with no reversal. Due 
to length requirements, we only select one of each out of the 
two available years. We did not use a specific time frame to 
evaluate performance during worse-case scenarios, instead 
relying on the CVaR metric over the whole backtesting period. 
Finally, to evaluate performance over time, we run the 
algorithms for one month every two months to see the evolution 
of their capabilities. 

IV. RESULTS & DISCUSSION 

 

Fig 1: Portfolio Value Across Backtesting Period 

The observed results from Fig 1 show that the combinations of 
state representations from past papers, named after their 
authors, and associated learning algorithms converge to similar 
behaviors, closely following market movements. During a 
financial crisis, the best algorithm yields a 15% return over two 
years. The following steps involve analyzing the distribution of 
returns and allocations. We found a surprisingly common 
outcome, represented by the second graph in Fig 2. Most 
combinations converged to constant allocations, regardless of 
current market conditions. These vary slightly by seed and 
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algorithm but remain composed of a small subset of assets with 
constant weights. Combinations such as the first graph in Fig 2 
seem to vary allocations but converge within some iterations to 
the first outcome. While the net returns are strictly positive and 
thus could be considered welcomed from a Finance point of 
view, the behavior indicates poor performance in DRL agents. 
These results are unexpected and prevent further analysis of 
component contribution since agents reached the same behavior 
regardless of variations in approaches and market conditions. 

 

 

Fig 2: Rebalancing of Allocations During Backtesting 

Analyzing the source of this behavior is challenging due to the 
nature of the environment. The data is noisy and highly 
stochastic, with few data points available over the training 
period. Our main hypothesis is that the agents do not recognize 
patterns and overfit a policy to predict the best historical 
actions. The strategy is akin to applying Markowitz Portfolio 
Selection once over the 14 years of training data to determine 
which assets are most likely to work in the future. While most 
learning algorithms are susceptible to hyperparameter 
selection, the first steps involved finding a set that seemed to 
learn efficiently over a short training period. The validation step 
would have kept models that generalized best. If the training 
process is not responsible for overfitting, we explore processes 
applied to the data. For this, we analyze approaches from other 
works. While few discuss such issues (Durall, 2022), we can 
extrapolate how others reached their results. 

It is common to augment when training on insufficient data 
(Benhamou, 2020; Liang, 2018). We should not do so with 
adversarial approaches, as adding noise to an already noisy time 
series would further hide signals. The most promising solutions 

involve modifying the data we use to train the models. 
(Pigorsch, 2021) predicts a value score for each asset before 
using a softmax layer to obtain the final allocation weights. 
Thus, we train the policy network on individual asset histories 
instead of the market as a whole. An alternative is widely 
increasing the number of assets analyzed before sampling a 
limited amount to train on as a representation of the market (Li, 
2019a). We did this step implicitly by selecting 18 assets 
manually but should adopt it more widely. 

To conclude, such obstacles are frequent in Reinforcement 
Learning and often require experimenting to solve. 
Determining the origin of a problem is challenging due to the 
lack of interpretability and explainability of policies. It is 
currently challenging to distinguish if a problem originates in 
the selection of a model, the learning algorithm's tuning, the 
quality of the environment representation, or the desired 
behavior expressed through the rewards. Our future works aim 
to clarify this position and agents' learning process. We believe 
Deep Reinforcement Learning could provide an attractive 
solution to OLPS. We strive to improve current solutions in 
terms of explainability, learning efficiency, and robustness in 
future works. 
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