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ABSTRACT 

Functional safety is crucial in automation systems, particularly for 

autonomous vehicles. It is important because it protects humans, 

systems or vehicles, and operating environments from harm. 

Automated systems can expose operators to severe safety risks. 

Functional safety aims to minimize safety risks associated with 

autonomous systems to protect operators, the environment with nearby 

infrastructure and people, and the systems themselves. This paper 

overviews multiple facets of Artificial Intelligence (AI) techniques that 

reduce functional safety risks. As AI and Machine Learning (ML) 

progress theoretically and in their application, we face new technical 

challenges in dealing with Multimodality and Explainability. We will 

discuss these concepts before briefly providing their perspectives on 

minimizing safety risks in autonomous systems. 

Keywords: Functional Safety, Machine Learning, Autonomous 

Vehicle, Soft Error, Explainability, Multimodality, Deep Learning, 

Neural Network. 

I. INTRODUCTION 

Functional safety is crucial in automation systems, 
particularly for autonomous vehicles. It is important because it 
protects humans, systems or vehicles, and operating 
environments from harm. Automated systems can expose 
operators to severe safety risks. Functional safety aims to 
minimize safety risks associated with autonomous systems to 
protect operators, the environment with nearby infrastructure 
and people, and the systems themselves. No matter the level of 
autonomy and the application domain, including safety risks, 
automation requires a lot of AI, data integration, and functional 
coordination capability. Everything that moves will be 
autonomous at some point in time and all will rely on AI. 
Functional safety allows autonomous systems to function safely 
if there is an electrical or electronic malfunction. Autonomous 
system products incorporate complex microelectronics and 
software into their design, making assessing and implementing 
functional safety in such systems a real challenge. 

Functional safety standards ensure that autonomous systems 
are equipped with automatic protection incorporating 
predictable and intelligent responses to failures from humans, 
hardware, or the environment. AI is vital in designing and 
implementing autonomous systems’ safety functions. When 
implementing such intelligent systems, we must deal with a lot 
of data and information integration, making multimodality 
crucial for any safety risk implementation. Multimodal machine 
learning aims to create models capable of processing and linking 
information from multiple modalities (data from textual 
elements, voice, or visual signals). 

Explainable Artificial Intelligence (XAI) is an emerging 
field that can explain how AI obtained a particular result or has 
answered a specific question (Gohel et al., 2016). Explainability 
is crucial for applications requiring trust, transparency, 
compliance, confidentiality, safety, fairness, accountability, and 
ethics. Explainability is then very important in functional safety. 
This paper overviews multiple facets of Artificial Intelligence 
techniques that reduce functional safety risks based on Machine 
Learning with Multimodality and Explainability perspectives 
for minimizing safety risks in autonomous systems. 

Related work referenced in this paper differs from our 
contribution. Work dealing with safety and some AI 
explainability, such as Abella et al., 2023 has not proposed any 
support for multimodality. Proposals addressing safety such as 
Biswas et al., 2005, Mariani et al., 2021, and Mukherjee et al. 
2004 have no ML consideration. Contributions dealing with 
some safety, particularly hardware failures such as Dubrawski 
& Sondheimer, 2011, Ignat et al., 2006, Furst 2019, Rajaram, 
2020, Sridharan & Kaeli 2010, and Vankeirsbilck et al, 2015 
have no AI or ML consideration. Papers with some AI support 
particularly multimodaly, such as Junchi et al., 2016, Kounta et 
al., 2022, Nie et al., 2021 and Poria et al., 2016 are implemented 
without any functional safety component. Work proposed by 
Arrieta et al., 2020, Coulibaly et al., 2022, Gohel et al., 2016, 
and Khan & Vice, 2022 deals with some AI and Explainability 
without any functional safety consideration. Contributions 
dealing with some safety, incorporating AI, particularly 
multimodality such as Paraskevopoulos et al., 2022 have no 
hardware failure consideration. 

This paper is organized as follows. Section I introduces this 
paper before presenting related work. Section II overviews 
functional safety concepts with ML foundation, including 
presenting a process for dealing with hardware failures. Section 
III describes the concepts and importance of multimodality and 
explainability in AI for autonomous and industrial systems. 
Section IV discusses the challenges and perspectives of 
functional safety, multimodality, and explainability for 
functional safety. Section V concludes this paper. 

II. FUNCTIONAL SAFETY IN AUTONOMOUS SYSTEMS 

An autonomous system, particularly an Autonomous 
Vehicle (AV) senses its surroundings and operates itself to 
perform all driving functions without any human physical 
intervention. Such a vehicle utilizes a fully automated driving 
system to deal with the vehicle’s internal and external situations, 
usually managed by a human. There are two primary levels of 
vehicle driving automation. The lower levels of autonomy, 
where a human driving a vehicle monitors its environment, can 
be assisted in performing a few specific tasks. The car can 
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perform tasks such as helping with parking, braking, steering, 
and speed monitoring. The driver monitors all the automated 
functions and can take control when needed. This case is 
illustrated by Fig 1 where a human interacts and deals with all 
the parameters and components of its environment e1, e2, …, en 
when handling all the functions f1, f2, …, fn of an AV.  

Fig 1. No Automation 

The higher levels of autonomy range from dependent or 
conditional automation to complete or full automation. The 
dependent automation mode allows the vehicle to perform most 
of the driving functions, including all environmental detection 
capabilities, with an option for the human driver to override 
some of them. This case is illustrated by Fig 2 where a human 
interacts and deals only with some parameters and components 
of its environment e1, e2, …, ek when handling some of the 
functions f1, f2, …, fm of an AV. The AV takes care of the 
remaining parameters and components of the environment ek+1, 
…, en when handling functions fm+1, …, fn. 

Fig 2. Dependent Automation 

The complete automation option allows the vehicle to 
perform all the driving functions under all conditions and 
circumstances without human intervention. This case is 
illustrated by Fig 3 where a human in the AV is passive, letting 
an AV deal with all the parameters and components of its 
environment e1, e2, …, en when handling all its functions f1, f2, 
…, fn. 

No matter the level of autonomy and the application domain, 
dependent or conditional automation requires a lot of Artificial 
Intelligence (AI), data integration, and functional coordination 
capability. Modern function safety and soft error modeling are 
usually overlooked regarding functional coordination capability.  

Fig 3. Complete Automation 

A. Development Process, Validation, and Dependability 

Deep Learning (DL) is a new computing model supported 
by Artificial Neural Networks (ANN) (Choi et al, 2020). ANN 
is a collection of simple, trainable mathematical units that 
collectively learn complex functions. Contrary to a traditional 
learning approach requiring domain experts and prone to errors, 
the DL approach uses several layers of ANN to learn from data 
(LeCun et al., 2015) ". DL learning is easy to extend and can be 
speeded up with GPUs. Given sufficient training data, an ANN 
can approximate complex functions, mapping raw data to output 
decisions. The training process is repetitive and involves 
forward and backward propagation. Using hidden layers, ANN 
is converted to Deep Artificial Neural Networks (DANN) 
(Annarumma et al., 2019). AV requires an end-to-end 
development Process. Including (1) Data collection Ops, (2) 
Data Labeling/Processing, (3) Mapping, (4) AI Model 
Development, (5) Autopilot, (6) NCAP, (7) Drive Valet, (8) 
Drive Concierge, and (9) Validation. AV also requires a very 
comprehensive validation approach, including end-to-end 
system-level tests, large scale with millions of miles, diverse 
vehicles, and world conditions, environment and situations, 
data-driven and different use case scenarios, validation needs to 
be repeatable and reproducible. Dependability (Athavale et al., 
2020) should deal with not only the conflicts among these 
technologies but also the synergies among them. We should 
consider how to define a holistic technology architecture that 
considers the requirements of technologies dealing with 
security, safety, time determinism, and reliability separately and 
when put all together. 

B. Functional Safety in AI and ML 

Functional safety allows AVs to function safely if there is an 
electrical or electronic malfunction. AV products incorporate 
complex microelectronics and software into their design, 
making assessing and implementing functional safety in such 
systems a real challenge. We define functional safety as the 
absence of unreasonable risk due to hazards caused by the 
malfunctioning behavior of electric or electronic systems. Two 
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types of failures must be considered regarding AV functional 
safety: systematic and random hardware failures. Systematic 
failures deal with bugs in software, hardware design, and tools 
(Rajaram, 2020). Per ISO 26262, systematic failures are 
“failures related in a deterministic way to a certain cause that can 
only be eliminated by a change of the design or of the 
manufacturing process, operational procedures, documentation 
or other relevant factors.” Some interesting techniques for early 
warning of systematic failures in the aerospace sector, partly 
applicable to the AV industry are proposed by Dubrawski & 
Sondheimer (2011). 

We distinguish systematic failures from random hardware 
failures, which can be permanent and transient faults when the 
parts are inoperable in the field. Per ISO 26262, random 
hardware failures are “failures that can occur unpredictably 
during the lifetime of a hardware element, and that follow a 
probability distribution.” In random hardware failures, 
permanent fault models include stuck-at fault, open circuit fault, 
bridging fault, and single event hard error fault. Permanent faults 
can be caused by reliable prediction models (IEC62380), stress 
tests, wear out, field data, etc. Transient fault models include 
single event transient, single event upset, single bit upset, 
multiple cell upset, and multiple bits upset. Soft errors can cause 
these faults due to high-energy neutrons, alpha particles, etc. 
Transient failure rates remain dominant in functional safety 
applications compared to permanent failures. Mitigating 
transient failures is one of the key focuses of any architecture 
design for safety applications. A model to evaluate random 
hardware failures based on fault tree analysis and Markov chain 
and applicable to the AV industry is proposed by Wang et al. 
(2019). 

C. Soft Error and Classification 

Generally, a soft error in an AV hardware (computing, 
electrical, and electronics) architectural component, is a type of 
error where a signal or datum is wrong and has changed from 0 
to 1 or 1 to 0. A soft error may go unnoticed without an error 
mitigation, detection, and correction system built into such an 
AV hardware component. The mitigation phase helps minimize 
the rate of soft errors at the AV hardware architectural design 
level. A Graphics Processing Unit (GPU) is a chip architecture 
designed to manipulate and alter memory to support self-driving 
technology and particularly advanced driver-assistance systems 
(ADAS) in the AV sector. 

D. Soft Error Detection and Correction 

The detection phase of soft errors uses both hardware and 
software techniques at the CPU (Central Processing Unit), 
register, and internal RAM level to deal with issues. IEC 61508 
with contents related to Soft Errors provides some standards for 
this phase. For instance, the IEC 61508 Soft Errors standard of 
the CPU requires the register and the internal RAM to be 
diagnosed at several requirement levels.  

Low requirement levels, or a minimum of 60%, are 
considered when dealing with some stuck-at faults with data and 
addresses. Medium requirement levels or a minimum of 90% are 
considered when dealing with some moderate soft errors 
changing information in the system. High requirement levels or 
a minimum of 99% are considered when dealing with more 
severe soft errors, and also changing information in the system. 

Anyway, the soft error and its detection techniques are linked to 
requirements imposed by the functional safety standards 
(Vankeirsbilck et al, 2015). The soft error detection and 
classification of the possible outcomes of a faulty bit are 
determined by the algorithm in Fig 4. The algorithm is adopted 
from several pieces of literature (Biswas et al., 2005; Ignat et al., 
2006, Junchi et al., 2016). 

Fig 4. Soft Error Classification Algorithm adopted from flowcharts 
[Biswas et al., 2005] 

E. Functional Safety Vulnerability Factors and Mitigation 

Mechanisms 

1) Functional Safety Vulnerability Factors: The 

vulnerability factors detailed in Mukherjee et al. (2004) depend 

on several parameters and variables, including the Architectural 

Vulnerability Factor (AVF), Timing Vulnerability Factor 

(TVF), and Program Vulnerability Factor (PVF). Sridharan and 

Kaeli (2010) have introduced and analyzed the Hardware 

Vulnerability Factor (HVF) to quantify the vulnerability of 

hardware. All these variables must be considered when 

designing and implementing AV systems and components. 

2) Functional Safety Mitigation Mechanisms: A functional 

safety standard relative to mitigation mechanisms includes ISO 

26262 2nd edition (ISO 26262 2018). It covers different ranges 

of diagnostic from Low, Medium to High. The low range 

includes (1) one-bit hardware redundancy and (2) stack 

over/underflow detection. The medium range includes (1) 

multi-bit hardware redundancy, (2) read back of the sent event, 

(3) transmission redundancy, (4) information redundancy (5) 

frame counter, (6) time-out monitoring, (7) self-test by 

software, and (8) self-test supported by hardware. The high 

range includes (1) complete hardware redundancy, (2) 

inspection using test patterns, (3) combination of information 

redundancy, (4) software diversified redundancy, (5) reciprocal 

comparison by software, (6) hardware redundancy, (7) 
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configuration register test, and (8) integrated hardware 

consistency monitoring.  

III. MULTIMODALITY AND EXPLAINABILITY IN AI AND ML 

Machine learning continues to make progress both 
theoretically and in application. However, it must face certain 
challenges, including multimodality and explainability, which 
we are interested in. The first part of this section focuses on 
multimodality with a learning approach based on developing a 
multi-branch deep neural network (DNN), each branch designed 
to process a certain type of data. The second part of this section 
focuses on the explainability of learning by proposing an 
approach combining several existing methods. The idea is to use 
their complementarities to enrich the explanations provided. The 
two concepts are important for functional safety. 

A. Multimodality in AI and ML 

Multimodal machine learning aims to create models capable 
of processing and linking information from multiple modalities 
(data from textual elements, voice, or visual signals). It is a 
dynamic multidisciplinary field of growing importance, with 
great potential and many challenges. It includes representation, 
translation, alignment, fusion, and co-learning (Baltrusaitis et 
al., 2019). 

1) Representation: Multimodal representation represents 

data using information from multiple entities (Paraskevopoulos 

et al., 2022). Joint representations combine the unimodal 

signals into the same representation space, while coordinated 

representations process unimodal signals distinctly, but enforce 

some similarity constraints on them to bring them to a 

coordinated space. For safety, using image captioning (You et 

al., 2016) for ambient awareness on a sidewalk is critical for 

safe navigation, especially for the blind or visually impaired 

(Ahmed et al., 2018). 

2) Translation: Given an entity in one modality, the task is 

to generate the same entity in a different modality via a 

mapping. On the one hand, example-based models employ a 

dictionary when translating between the modalities. On the 

other hand, generative models, build a model that can produce 

a translation. In safety, translation (Sulubacak et al., 2020) 

plays a crucial role in preventing accidents and injuries by 

ensuring that all humans and autonomous systems clearly 

understand safety instructions and procedures, warning signs, 

and other safety-related communications. 

3) Alignment: Multimodal alignment finds relationships 

and correspondences between sub-components of instances 

from two or more modalities. Explicit alignment is performed 

if the main modeling objective concerns alignment between 

subcomponents of instances from two or more modalities. 

Implicit alignment is used as an intermediate (often latent) step 

for another task and the model can learn how to latently align 

the data during training. Aligning images and texts can help 

humans or autonomous systems walk or navigate more safely. 

For instance, an image of a supposed dry sidewalk or road and 

the text “Ice” when aligned can alert of a dangerous icy road 

situation. 

4) Fusion: Multimodal fusion (Nie et al., 2021) is the 

concept of integrating information from multiple modalities to 

predict an outcome measure: a class (e.g., normal vs. abnormal) 

through classification, or a continuous value (e.g., the 

superiority of a particular measure) through regression. Model-

agnostic approaches are not directly dependent on a specific 

machine learning method whereas model-based approaches 

explicitly address fusion in their construction. Fusioning an 

image from a camera, the speed from GPS, and the angles of a 

wheel from a sensor could help an autonomous vehicle take 

appropriate safety actions to prevent an accident. 

5) Co-learning: Multimodal machine learning (Rahate et 

al., 2022) applications can be found in several areas including, 

but not limited to, speech recognition and synthesis, event 

detection, emotion (Fig. 5) and affect, media description, and 

multimedia retrieval. To operate safely, Autonomous vehicles 

use information remotely sensed from Synthetic Aperture 

Radar (SAR) images and optical images. If optical images are 

unavailable due to poor weather conditions, co-learning can 

help compensate for missing optical image fragments (Zheng et 

al.,2021). 

 
Fig 5. Some Facets of Multimodal Emotions 

The applications of multimodal learning can relate to the 
contexts of information sciences (speech recognition and 
synthesis, event detection, emotion and affect, media description 
and Multimedia retrieval) or industrial contexts such as the 
verification of the quality of the surfaces of parts obtained after 
machining processes (Kounta et al., 2022).  

B. Explainability in AI and ML 

Explainable Artificial Intelligence (XAI) is an emerging 
field of Artificial Intelligence (AI) that can explain how AI 
obtained a particular result or has answered a specific question 
(Gohel et al., 2016). Explainability is crucial for applications 
requiring trust, transparency, compliance, confidentiality, 
safety, fairness, accountability, and ethics. 
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The development of AI relative to ML methods provides 
powerful tools to analyze difficult problems while taking 
explainability needs (Arrieta et al., 2020). This opens the way to 
a better understanding of the predictions induced, particularly on 
a global or local scale, but facilitates the implementation of 
actions promoting the development of justification through 
symbolic and numerical reasoning (Bennetot et al., 2022). To 
increase user trust in AI and ML, XAI provides ways to easily 
understand the algorithms and results used in each AI process 
when making decisions, predictions, and insights. 

1) Explainability Levels: We can differentiate several 

levels of explainability in AI. The data, process, prediction, and 

complexity levels. 

2) Explainability Deployment: It deals with the deployment 

of explainability techniques in the processing of data acquired 

by connected objects. For example, it helps implement 

innovative safety services in agriculture (harmful insects, plant 

diseases) (Coulibaly et al., 2022). 

3) Explainability Cases: Various sectors in our daily lives 

are involved with risky decision processes and must heavily 

deal with XAI. Some of such areas involving XAI can be found 

in AVs, healthcare, agriculture, industry, business, and finance, 

just to name a few. The AI used in such sectors and systems 

should be explainable and support some or most of the features 

described in Fig 6. 

Fig 6. Some important XAI features 

IV. FUNCTIONAL SAFETY, MULTIMODALITY, AND 

EXPLAINABILITY: CHALLENGES AND PERSPECTIVES 

This section describes some challenges and perspectives of 
functional safety in autonomous systems before presenting how 
explainability of algorithm results is important in AI and the role 
of multimodal machine learning in predicting outcomes. 

A. Functional Safety Challenges and Perspectives 

Functional safety and soft error rate requirements pose 
challenges in markets such as autonomous vehicles. The 
transient failure rates continue to reduce the functional safety of 

applications. Methodology to analyze and strengthen functional 
safety components should consider its safety goal, soft error 
testing and modeling methodologies, error classification, and 
innovative mitigation strategies in hardware and software. We 
must explore innovations in all layers, including technology, 
hardware, software, and firmware mitigation. The combinations 
of on-chip and off-chip features and techniques are critical to 
meet safety requirements. 

B. Explainability of AI Algorithm Results 

As AI acceptance and automatic decisions impact people, 
some minimum elements of transparency are required, 
explaining how the algorithmic decisions were made. We say 
that an algorithmic decision is interpretable if it is possible to 
account for it explicitly from known data and characteristics of 
the situation. In other words, if it is possible to relate the values 
taken by certain variables (characteristics) and their 
consequences on the forecast, such as a score, and thus on the 
decision. On the other hand, an algorithmic decision is said to be 
explainable if it is only possible to identify the characteristics or 
variables that contribute the most to the decision, or even to 
quantify their importance. Each actor, public or private, and each 
field, health, justice, employment, banking, insurance, and 
police requires a specific reading of what algorithmic 
transparency can be concerning the right to explanation. In any 
case, it seems essential to be able to make a social choice on 
what is preferable in a balance of detailed interests between the 
quality of the explanation and the quality of the forecast, at least 
in the hypotheses where the characteristics of the algorithms are 
reducible to these two main qualities. 

C. Multimodal Machine Learning for Enhancing Predictions 

Multimodal machine learning aims to create models capable 
of processing and linking information from multiple modalities 
(data from textual elements, voice, or visual signals). It is a 
dynamic multidisciplinary field of growing importance and with 
great potential, but with many challenges. Multimodal machine 
learning includes representation, translation, alignment, fusion, 
and co-learning. Multimodal fusion is one of the original themes 
of multimodal machine learning, with works in the literature 
favoring early, late, and hybrid fusion approaches. Technically, 
multimodal fusion is the concept of integrating information from 
multiple modalities to predict an outcome of a measurement: a 
category by classification, or a continuous value by regression. 
Interest in multimodal fusion stems from three main advantages 
it can provide. First, having access to several modalities that 
observe the same phenomenon can lead to more robust 
predictions. Secondarily, having access to multiple modalities 
might allow us to capture complementary information not 
independently discernible in individual modalities. Third, a 
multimodal system can still work when one of the modalities is 
missing, for example, recognizing the characteristics of a 
phenomenon with the visual signal in the absence of an audio 
signal. 

V. CONCLUSION 

This paper overviewed multiple facets of AI techniques that 
reduce functional safety risks. As AI, Machine Learning, and 
Deep Learning progress theoretically and in their application, 
we face new technical challenges in dealing with Multimodality 
and Explainability. We have presented these concepts before 
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briefly providing their perspectives on minimizing safety risks 
in autonomous systems. Future work will discuss in more detail 
how Multimodality and Explainability can be used to support 
Functional Safety. 
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